por kath » Sex Abr 18, 2014 02:32
Ola,
GOSTARIA QUE VOCES ME AJUDASSEM ME EXPLICANDO COMO SE RESOLVE ESSA QUESTAO PASSO A PASSO, POIS NAO TO CONSEGUINDO ENTENDER ELA NAO NECESSARIAMENTE RESOLVER TODAS PODE SER UMA SO QUE GOSTARIA DE UMA EXPLICAÇÃO CLARA E DETALHADA.
Sabendo que as matrizes M e N são invertíveis e de mesma ordem, exprimir a matriz X em Função de M e N, nos seguintes casos:
a) (XM)^t=N
B) (XM)^-1=N
C) M(XM)^-1=N
D) M[(XN)^t]^-1=N
R: a) X=N^t M^-1; b) x=N^1M^-1 ; C)X=N^-1; D)X=m^t(N^-1)^t N^-1
OBS: ^t = é a matriz trasposta
^-1 = é a matriz inversa
-
kath
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Abr 18, 2014 02:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por e8group » Sex Abr 18, 2014 15:53
Vamos utilizar os dois métodos abaixo para resolver cada item .
(i)

(Dada uma matriz A invertível , a inversa da inversa de A é a própria matriz A) e
(ii) Utilizar a hipótese que

de mesma ordem são invertíveis para realizar multiplicações pela esquerda ou direita (o produto não é comutativo) conforme for necessário a explicitar

.
Por exemplo , em (a) temos

, logo
![[(XM)^t]^t = N^t [(XM)^t]^t = N^t](/latexrender/pictures/b09bbe2412775a10cc806a82fe0103b5.png)
. Por (i) ,
![[(XM)^t]^t =XM [(XM)^t]^t =XM](/latexrender/pictures/585486cecac71e5f422dd25fe5761b4e.png)
e assim ,

. Agora por (ii) , multiplicaremos pela direita ambos membros por

(tome cuidado , em geral

)
e além disso ,

.
Os demais itens pode ser resolvidos de forma análoga .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Matrizes invertíveis] e matrizes inversas
por JacquesPhilippe » Seg Ago 08, 2011 19:19
- 3 Respostas
- 4920 Exibições
- Última mensagem por LuizAquino

Qui Ago 11, 2011 19:43
Matrizes e Determinantes
-
- [det(A + B)] é DIFERENTE de 0 então A ou B são invertíveis?
por jlr2906 » Sáb Set 01, 2018 05:03
- 1 Respostas
- 5991 Exibições
- Última mensagem por adauto martins

Sex Mai 01, 2020 19:04
Álgebra Linear
-
- [Matrizes] produto de matrizes
por vanessafey » Dom Ago 28, 2011 16:54
- 1 Respostas
- 3440 Exibições
- Última mensagem por MarceloFantini

Dom Ago 28, 2011 17:35
Matrizes e Determinantes
-
- [MATRIZES] Demonstração de matrizes
por farinha99 » Sáb Set 03, 2016 11:56
- 0 Respostas
- 5779 Exibições
- Última mensagem por farinha99

Sáb Set 03, 2016 11:56
Matrizes e Determinantes
-
- matrizes
por luix henrique » Seg Out 13, 2008 15:42
- 1 Respostas
- 9527 Exibições
- Última mensagem por Molina

Seg Out 13, 2008 20:13
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.