• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função:Domínio

Função:Domínio

Mensagempor +Julia » Sáb Abr 12, 2014 10:10

Qual o domínio da seguinte função f(x) =³?x+2/x-3

Peço desculpas,por não conseguir formatar no Latex
+Julia
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 12, 2014 09:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: matemática
Andamento: cursando

Re: Função:Domínio

Mensagempor e8group » Sáb Abr 12, 2014 14:45

Sempre quando for avaliarmos o domínio de uma certa função pensamos no maior subconjunto (neste caso dos reais) para o qual a função está sempre bem definida .Mais fácil analisar quando a função não está definida , em certos pontos , digamos x_0 , x_1 , \hdots , x_n , daí o domínio da função será o complementar de \{ x_0 , x_1 , \hdots , x_n \} .

Exemplificando :

1) Se f (x) = 1/x , temos q esta função f está bem definida sempre que x \neq 0 .Portanto , para qualquer A \subset\mathbb{R}^* não vazio , podemos definir f : A \mapsto \mathbb{R} que associa a cada x em Aa um número f(x) \in \mathbb{R} .Logicamente , o maior subconjunto de \mathbb{R}^* é o próprio \mathbb{R}^* ...

2) g(x) = f(1-sin(x)) =  1/(1-sin(x)) .Encontrar o domínio de g não é tão trivial , mas não tão difícil assim ...

Podemos pensar quando g(x) não estar definido . Isto ocorre quando 1 - sin(x) =  0 ou seja quando
sin(x) = 1 .Temos que \hdots   sin(\pi/2 - 6\pi ) =  sin(\pi/2 - 4\pi )  =  sin(\pi/2 - 2\pi ) =   sin(\pi/2)  =   sin(\pi/2  + 2\pi) = sin(\pi/2  + 4\pi)  =   sin(\pi/2  + 6\pi)   =     \hdots      =       1

Portanto , g(x) não está definido para x = \pi/2 + 2k \pi  ,   k\in \mathbb{Z} ... O maior domínio possível é

\left(\bigcup_{k \in \mathbb{Z}} \{ \pi/2 + 2k \pi \}\right)^C , em outras palavras , o conjunto dos números reais tirando os infinitos pontos que se exprimir por \pi/2 +  2k\pi com k inteiro .

Outra forma é tomar a interseção do domínio de f com a imagem da função dada pela relação 1-sin(x) .

A ideia é essa .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}