• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites]Calcular limite

[limites]Calcular limite

Mensagempor fff » Qua Abr 09, 2014 12:29

\lim_{+\propto}\frac{{e}^{2x}-{e}^{x}}{ln(x+1)}
R:+\propto (só posso utilizar limites notáveis)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [limites]Calcular limite

Mensagempor e8group » Sex Abr 11, 2014 01:14

O limite é + infty .

Pq ?

Uma alternativa ...

Proposição :

Se f(x) \geq g(x) para todo a < x < +\infty e lim(g(x)) = +\infty então lim(f(x)) = +\infty .(a podendo ser número real ou - \infty )

Agora note que

e^x -1  > x para todo x > 0 . Então

e^{x} (e^{x} -1) = e^{2x} -e^{x} > e^{x} x \implies \frac{e^{2x} -e^{x} }{ln(x+1)} > \frac{e^{x} x  }{ln(x+1)}  > \frac{(x+1) x}{ln(x+1) }  =  x \cdot \frac{x+1}{ln(x+1) } > x    ,  x >  0 .

Ou seja , \frac{e^{2x} -e^{x} }{ln(x+1)} > x para todo +\infty > x > 0 .

Daí quando passamos ao limite com x \to +\infty , obteremos o resultado .


P.S.: Plote os gráficos para x > 0 e faça uma comparação .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)