• Anúncio Global
    Respostas
    Exibições
    Última mensagem

factorizar a funçao?

factorizar a funçao?

Mensagempor pavaroti » Dom Dez 06, 2009 11:14

Apareceu um exercício que não entendi como resolver que é o seguinte:

Factorize a seguinte função

f(x)=x+2

o que quer dizer com a factorizar? e' isso que não entendi :S
pavaroti
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Nov 01, 2009 23:04
Formação Escolar: GRADUAÇÃO
Área/Curso: inf
Andamento: cursando

Re: factorizar a funçao?

Mensagempor Molina » Dom Dez 06, 2009 12:18

Bom dia, amigo.

Acredito que seja fatorar mesmo. Porém, este termo ja está fatorado.

Por exemplo, se fosse: f(x)=2x+2 eu poderia fatorar, colocando o 2 em evidência: f(x)=2(x+1)

E agora, será que é isso mesmo? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.