• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação

Potenciação

Mensagempor Bielto » Seg Mar 10, 2014 20:06

Boa noite,

Como simplificar expressões algébricas? Estou resolvendo exercícios de potenciação e me deparei com esses aqui.

\[\frac{5^x^+^3 - 5^x^+^1}{5^x^-^2}\] Resposta: 3.000

\[\frac{3^3^-^n+3.3^2^-^n-9.3^1^-^n}{9.3^2^-^n}\] Resposta:\[\frac{1}{3}\]

\[\frac{12.5^2^n^+^1-8.5^2^n}{60.25^n}\] Resposta: \[\frac{13}{15}\]
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Potenciação

Mensagempor Russman » Seg Mar 10, 2014 21:20

Você precisa lembrar que

x^{a+b} = x^a x^b , \quad \forall x,a,b \in \mathbb{R}

e que

\frac{a.b - a.c}{a.d} = \frac{b-c}{d}, \quad d \neq 0.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Potenciação

Mensagempor Bielto » Seg Mar 10, 2014 23:42

Russman escreveu:Você precisa lembrar que

x^{a+b} = x^a x^b , \quad \forall x,a,b \in \mathbb{R}

e que

\frac{a.b - a.c}{a.d} = \frac{b-c}{d}, \quad d \neq 0.


Boa noite!

Então, o que eu não entendi é \frac{a.b - a.c}{a.d} = \frac{b-c}{d} os dois "a" de cima se cancelam, ficando \frac{b-c}{d} mas pra onde foi o "a" que estava embaixo?
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Potenciação

Mensagempor Bielto » Ter Mar 11, 2014 00:11

Bielto escreveu:
Russman escreveu:Você precisa lembrar que

x^{a+b} = x^a x^b , \quad \forall x,a,b \in \mathbb{R}

e que

\frac{a.b - a.c}{a.d} = \frac{b-c}{d}, \quad d \neq 0.


Boa noite!

Então, o que eu não entendi é \frac{a.b - a.c}{a.d} = \frac{b-c}{d} os dois "a" de cima se cancelam, ficando \frac{b-c}{d} mas pra onde foi o "a" que estava embaixo?

OBS: Qual matéria que se estuda essa regra? \frac{a.b - a.c}{a.d} = \frac{b-c}{d}, \quad d \neq 0
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Potenciação

Mensagempor Russman » Ter Mar 11, 2014 23:31

Bem, acredito que você conheça essa relação a sua vida toda. Apenas nunca a viu dessa forma.

Estamos fatorando o a que é fator comum do numerador e simplificando com o a do numerador!

\frac{a.b + a.c}{a.d} = \frac{a(b+c)}{a.d} = \frac{a}{a}. \frac{b+c}{d} = 1. \frac{b+c}{d} = \frac{b+c}{d}

Exemplo:

\frac{4}{12} = \frac{2+2}{2.6} = \frac{2(1+1)}{2.6} = \frac{1+1}{6} = \frac{2}{6}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Potenciação

Mensagempor Russman » Ter Mar 11, 2014 23:35

Bem, acredito que você conheça essa relação a sua vida toda. Apenas nunca a viu dessa forma.

Estamos fatorando o a que é fator comum do numerador e simplificando com o a do numerador!

\frac{a.b + a.c}{a.d} = \frac{a(b+c)}{a.d} = \frac{a}{a}. \frac{b+c}{d} = 1. \frac{b+c}{d} = \frac{b+c}{d}

Exemplo:

\frac{4}{12} = \frac{2+2}{2.6} = \frac{2(1+1)}{2.6} = \frac{1+1}{6} = \frac{2}{6}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: