• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de Limites

Cálculo de Limites

Mensagempor nathilopes » Qua Mar 05, 2014 18:29

Essa eu fiz mas gostaria de ter certeza do meu resultado.

lim x->2 \frac{\sqrt{x}-2\sqrt{2}}{\sqrt{x+8}-4}

lim x-> [tex]\frac{x-8}{\sqrt{{x}^{2}+6x+16}-2}

lim x->2 \frac{2-8}{\sqrt{{2}^{2}+6.2+16}-2}

lim x->2 \frac{-6}{\sqrt{32}-2}
nathilopes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 05, 2014 02:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Cálculo de Limites

Mensagempor Man Utd » Qua Mar 05, 2014 21:48

Por favor Edite sua mensagem.Não entendi bem. :y:
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Cálculo de Limites

Mensagempor nathilopes » Qui Mar 06, 2014 00:57

Lim x->2 \sqrt{2}-2\sqrt{2}/\sqrt{x+8}-4

Essa é a questão
nathilopes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 05, 2014 02:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Cálculo de Limites

Mensagempor Man Utd » Qui Mar 06, 2014 12:51

nathilopes escreveu:Lim x->2 \sqrt{2}-2\sqrt{2}/\sqrt{x+8}-4

Essa é a questão




\lim_{ x \to 2} \;  \frac{\sqrt{2}-2\sqrt{2}}{\sqrt{x+8}-4}



=\frac{\sqrt{2}-2\sqrt{2}}{\sqrt{2+8}-4}


=\frac{\sqrt{2}-2\sqrt{2}}{\sqrt{10}-4}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)