• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida em derivadas 2

Duvida em derivadas 2

Mensagempor igones » Sex Dez 04, 2009 20:23

Sejam f(x) e g(x) 2 funções derivaveis em A, com f(x) > 0 para todo x E A.
- Mostre que [f(x)^g(x)]' = f(x)^g(x).[g(x)ln(f(x))]' ((ali é f(x)^g(x) , o x fica embaixo...=/))

- Utilizando o resultado acima determine \frac{dy}{dx}, onde y = x^x

Não to conseguindo chegar a resposta certa nessa 2 questão, =/
igones
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sex Dez 04, 2009 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: Duvida em derivadas 2

Mensagempor Lucio Carvalho » Sáb Dez 05, 2009 18:33

Olá igones,
Apresento em anexo uma ajuda para a tua questão.
Espero que compreendas!
Anexos
derivada.jpg
derivada
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Duvida em derivadas 2

Mensagempor igones » Dom Dez 06, 2009 01:10

Não entendi direito, se puder explicar..
Só da pra fazer deduzindo desse jeito!?
Ou da pra fazer de outro jeito?

Obrigado!!
Tenho mais essa questão se puder resolver, é sobre regra da cadeia:
Derive: Y= Sen(sqrt x) //Minha dúvida é quem ta dentro de quem?!

Abraços e obrigado denovo!
:)
igones
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sex Dez 04, 2009 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: Duvida em derivadas 2

Mensagempor Lucio Carvalho » Dom Dez 06, 2009 07:49

Olá igones,
Quanto à tua segunda questão devemos lembrar que: (sen u)' = u'.cos u

No nosso caso, u=\sqrt[]{x}

Assim,

{[sen(\sqrt[]{x})]}^{\prime}={(\sqrt[]{x})}^{\prime}.cos(\sqrt[]{x})

{[sen(\sqrt[]{x})]}^{\prime}=\frac{1}{2.\sqrt[]{x}}.cos(\sqrt[]{x})

Espero ter ajudado!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}