• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Supremo

Supremo

Mensagempor marinalcd » Ter Fev 25, 2014 22:46

Preciso mostrar que SupC = \pi, sendo C = [- \sqrt[]{2}, \pi) \cap Q.

Tentei fazer o seguinte:
Defini um c<\pi e 1º: somei \pi nos dois lados e dividi por 2. 2º: somei c nos dois lados e dividi por 2.
Compara as duas desigualdades e cheguei em c < \frac{c+\pi}{2}<\pi.
O problema é que não posso utilizar esse método, pois tem o número irracional no meio.
Mas não estou conseguindo provar de outra forma.
Alguém pode me ajudar nesse problema?
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Supremo

Mensagempor Bravim » Qua Fev 26, 2014 19:56

\exists x \in C tal que -\sqrt[]{2}\leq x < \pi.
-\sqrt[]{2}-x\leq 0 < \pi - x.
Definindo \epsilon \in Q tal que 0<\epsilon<\pi - x.
x<x+\epsilon<\pi.
Agora supomos que exista um supremo para esse conjunto:
sup(C)=M, M\in\Re
Neste caso,
x<x+\epsilon \leq M
Como devemos escolher o menor limitante superior para esse conjunto,
M=\pi
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)