por Victor Mello » Sáb Fev 22, 2014 14:49
Galera, eu estou tentando resolver a derivada parcial de segunda ordem da função

.
Bom, no começo estava dando certo, derivei tudo em relação x, y.


Aí na hora de derivá-los na segunda ordem, o meu resultado deu:
![\frac{\partial^2 z}{\partial x^2} = -6xsen(x^3 +xy) + (-3x^2 - y)[cos(x^3+xy)(3x^2+y)] \frac{\partial^2 z}{\partial x^2} = -6xsen(x^3 +xy) + (-3x^2 - y)[cos(x^3+xy)(3x^2+y)]](/latexrender/pictures/793d6b3d84fdd92a681f135258a2e50c.png)

Só que em relação ao x, o gabarito deu

, está bem diferente da minha pelo simples fato do termo

aparecer uma vez só no cosseno, o meu apareceu duas vezes, será que eu errei alguma coisa, de sinal, ou algo do tipo? Eu verifiquei tudo de novo, mas deu mesma coisa. Só em relação ao y é que o gabarito correspondeu a minha resposta.
Bom, espero que tenham compreendido a minha dúvida, e obrigado!
Abraço!
-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
por Man Utd » Sáb Fev 22, 2014 18:58
Victor Mello escreveu:Galera, eu estou tentando resolver a derivada parcial de segunda ordem da função

.
Bom, no começo estava dando certo, derivei tudo em relação x, y.


Aí na hora de derivá-los na segunda ordem, o meu resultado deu:
![\frac{\partial^2 z}{\partial x^2} = -6xsen(x^3 +xy) + (-3x^2 - y)[cos(x^3+xy)(3x^2+y)] \frac{\partial^2 z}{\partial x^2} = -6xsen(x^3 +xy) + (-3x^2 - y)[cos(x^3+xy)(3x^2+y)]](/latexrender/pictures/793d6b3d84fdd92a681f135258a2e50c.png)

Só que em relação ao x, o gabarito deu

, está bem diferente da minha pelo simples fato do termo

aparecer uma vez só no cosseno, o meu apareceu duas vezes, será que eu errei alguma coisa, de sinal, ou algo do tipo? Eu verifiquei tudo de novo, mas deu mesma coisa. Só em relação ao y é que o gabarito correspondeu a minha resposta.
Bom, espero que tenham compreendido a minha dúvida, e obrigado!
Abraço!
Olá
Sua solução está correta veja o
Wolfram , o gabarito não seria

? , assim sua resposta bateria com o gabarito.
-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por Victor Mello » Dom Fev 23, 2014 01:49
Estranho... Acho que o gabarito viajou hahahahaha. Enfim, se está correta a resposta, bom, acho que compensa a minha resolução.
Obrigado pela atenção.
-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas Parciais de segunda ordem.
por michellepoubel » Qua Set 23, 2015 12:19
- 2 Respostas
- 1426 Exibições
- Última mensagem por killerkm

Seg Set 28, 2015 18:21
Cálculo: Limites, Derivadas e Integrais
-
- EDO de Segunda Ordem
por OtavioBonassi » Ter Nov 15, 2011 11:45
- 0 Respostas
- 1184 Exibições
- Última mensagem por OtavioBonassi

Ter Nov 15, 2011 11:45
Sistemas de Equações
-
- derivada de segunda ordem
por lgbmp » Sex Set 03, 2010 19:25
- 2 Respostas
- 2914 Exibições
- Última mensagem por lgbmp

Seg Set 06, 2010 13:35
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada de segunda ordem]
por spektroos » Sáb Nov 24, 2012 23:43
- 2 Respostas
- 2092 Exibições
- Última mensagem por spektroos

Dom Nov 25, 2012 02:39
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada de segunda ordem]
por spektroos » Sáb Nov 24, 2012 23:48
- 1 Respostas
- 1449 Exibições
- Última mensagem por e8group

Dom Nov 25, 2012 10:12
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.