• Anúncio Global
    Respostas
    Exibições
    Última mensagem

GEOMETRIA ANALITICA - VETORES - ENGENHARIA

GEOMETRIA ANALITICA - VETORES - ENGENHARIA

Mensagempor engenheiroemduvida » Qua Fev 19, 2014 21:38

UM VETOR W DO R3 (ESPAÇO) FORMA COM OS EIXOS AX E AY,ÂNGULOS DE 60º E 120º RESPECTIVAMENTE,DETERMINE W(VETOR) PARA QUE ELE TENHA MODULO IGUAL A 2 *-) *-)

AJUDA!
engenheiroemduvida
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Fev 19, 2014 21:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Química
Andamento: cursando

Re: GEOMETRIA ANALITICA - VETORES - ENGENHARIA

Mensagempor Russman » Qui Fev 20, 2014 22:27

Todo vetor w \in \mathbbm{R}^3 pode ser escrito como

\overrightarrow{w} =  w ( \cos( \alpha_x)\widehat{i}   + \cos( \alpha_y) \widehat{j}   +\cos( \alpha_z) \widehat{k}  )

onde os "alphas" são os ângulos que cada componente forma com o respectivos eixos e w é o módulo do vetor.

Com os ângulos dados escrevemos então

\overrightarrow{w} =  w ( \frac{1}{2} \widehat{i}   - \frac{1}{2} \widehat{j}   + \cos(\alpha_z) \widehat{k}  )

Lembre-se que \overrightarrow{w} \cdot \overrightarrow{w} = w^2. Assim,

\frac{1}{4} + \frac{1}{4} + \cos^2(\alpha_z) = 1 \Rightarrow \cos^2(\alpha_z) = \frac{1}{2} \Rightarrow \cos(\alpha_z) = \pm \frac{1}{\sqrt{2}}

Se o módulo do mesmo tem de ser 2, então w=2 e , portanto,

\overrightarrow{w} =  \widehat{i}   -  \widehat{j}   \pm \sqrt{2}  \widehat{k}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.