• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Métodos para encontrar raizes de qualquer função?

Métodos para encontrar raizes de qualquer função?

Mensagempor Luiz Augusto Prado » Qua Dez 02, 2009 15:08

Olá pessoal!
Quais são os métodos possiveis para encontrarmos raizes de qualuqerr funções?
O método de Newton-Raphson não é perfeito mas é muito interessante.
Alguem poderia, por favor, enumerar outros métodos e se possivel com links com referencia?

1 - método de Newton-Raphson (para muitas funções) Não funciona, por exemplo, para f^{-1}tan(x)
2 - baskara (para eq de 2º grau)
3 - Tartaglia (eq de 3º e 4º)
Avatar do usuário
Luiz Augusto Prado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Nov 27, 2009 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Métodos para encontrar raizes de qualquer função?

Mensagempor Elcioschin » Qua Dez 02, 2009 19:42

Um método simples é para pesquisa de raízes racionais (se existirem):

P(x) = a*x^n + b*x^(n-1) + c*x^(n-2) + ......+ m*x²+ n*x + p

As raízes racionais, se existirem serão dadas pela relação entre os divisores inteiros de p e os divisores inteiros de a
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.