• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda questão de matemática da fuvest

Ajuda questão de matemática da fuvest

Mensagempor gabriela o marengao » Qui Fev 13, 2014 21:24

A diferença entre os quadrados de dois números naturais é 21. Um dos possíveis valores da soma dos quadrados desses dois números é
a) 29
b) 97
c) 132
d) 184
e) 252
Avatar do usuário
gabriela o marengao
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Fev 13, 2014 21:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda questão de matemática da fuvest

Mensagempor e8group » Qui Fev 13, 2014 22:08

Dica :

Considere x,y estes números naturais .Suponha x > y . Então x-y e x+y pertencem aos naturais .E x^2 -y^2 = (x-y)(x+y) e tbm veja q 21 = 3 \cdot 7 (com 3,7 primos ) . Daí vc encontra os possíveis valores para x,y .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.