• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Relações]Uece

[Relações]Uece

Mensagempor Giudav » Ter Fev 11, 2014 18:00

(Uece) Sejam A = {2,4,6,8,10,12...64} e B = {(m,n) \in A x A / m+n = 64}. O número de elementos de B é iqual a:
a)31
b)32
c)62
d)64

Resolução minha: se A vai até 64 .:. temos 32 elementos aplicando aqui ''A x A / m+n = 64}'' 1024/64 = m ou n =16 .:. 16+16=32 (b)
Gabarito (a)
Giudav
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Fev 21, 2012 23:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Relações]Uece

Mensagempor e8group » Ter Fev 11, 2014 18:48

Você contou um a mais .Pois se m = 64 então n = 0 e 0 \notin A .Logo , (64,0) \notin A^2 \supset B.Outra forma de escrever o conjunto B : \{(n,64-n) \in A^2 \} .

Se n \in A e n < 64 , então o número 64 -n positivo é par e é menor que 64 ; pelo que este número tbm está no conjunto A . Logo , o par ordenado (n,64-n) \in B desde que n \in A e n \neq 64 .Isto justifica que B possui 31 elementos .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.