• Anúncio Global
    Respostas
    Exibições
    Última mensagem

prova da uesb 2006.1

prova da uesb 2006.1

Mensagempor Matheusvc1 » Dom Dez 08, 2013 15:30

1. Se f(x) = x3 + 2x2 - 3x + 2, então f(i) é um número complexo cujos argumento
principal e módulo são, respectivamente,

2.Se a soma dos n primeiros termos de uma progressão aritmética é dada
pela expressão Sn = n2 - 6n, então o décimo quinto termo dessa progressão
é um elemento do conjunto
01) {10, 15, 20}
02) {11, 16, 21}
03) {12, 17, 22}
04) {13, 18, 23}
05) {14, 19, 24}

3.Se 9^(x+1)/2=(3^x+1)/2, entao x é:
Matheusvc1
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 07, 2013 18:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: prova da uesb 2006.1

Mensagempor DanielFerreira » Ter Fev 11, 2014 16:10

Matheusvc1 escreveu:1. Se f(x) = x3 + 2x2 - 3x + 2, então f(i) é um número complexo cujos argumento
principal e módulo são, respectivamente,


\\ f(x) = x^3 + 2x^2 - 3x + 2 \\\\ f(i) = i^3 + 2i^2 - 3i + 2 \\\\ f(i) = - i - 2 - 3i + 2 \\\\ f(i) = - 4i


Módulo:

\\ \rho = \sqrt{a^2 + b^2} \\\\ \rho = \sqrt{0 + 16} \\\\ \boxed{\rho = 4}


Argumento:

\\ \sin \theta = \frac{b}{\rho} \\\\ \sin \theta = \frac{- 4}{4} \\\\ \sin \theta = - 1 \\\\ \boxed{\theta = \frac{3\pi}{2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}