por fff » Sáb Fev 08, 2014 21:41
Boa noite. Tenho dúvidas em calcular este limite.

Resposta: -1
-

fff
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sáb Dez 21, 2013 11:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Informática
- Andamento: cursando
por e8group » Sáb Fev 08, 2014 23:36
Boa noite . Sugiro que faça a substituição

. Agora tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fff » Dom Fev 09, 2014 08:57
Substituí

por y:

Depois (não tenho a certeza se posso fazer assim):

E agora?
-

fff
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sáb Dez 21, 2013 11:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Informática
- Andamento: cursando
por e8group » Dom Fev 09, 2014 15:29
Bom tarde. Note que se

, então

e além disso ,
![ln(e^{-x} -1) = ln(y-1) = ln \left(y \left[1 - \dfrac{1}{y}\right]\right) = ln(y) + ln(1 - \dfrac{1}{y}) ln(e^{-x} -1) = ln(y-1) = ln \left(y \left[1 - \dfrac{1}{y}\right]\right) = ln(y) + ln(1 - \dfrac{1}{y})](/latexrender/pictures/3b36f1f06f71cc35cb0467472330e987.png)
(pois como definimos

, ele sempre será > 0 ) .
Agora tente calcular o limite abaixo :

Para tal ,segue algumas observações (só p/ simplificar a notação ,

significa

e ao invés de dizermos a função f contínua ou de classe C^0 , definida por f(x) , vamos dizer apenas f(x) é contínua )
(i)

e

implicam
(ii)

é contínua em 1 e

é descontínua apenas na origem . Logo ,a segunda função é contínua em valores arbitrariamente grandes e

.Portanto
![lim\left(ln\left[1 - \frac{1}{y}\right]\right) = ln\left(lim\left[1 - \frac{1}{y}\right] \right)= ln(1) = 0 lim\left(ln\left[1 - \frac{1}{y}\right]\right) = ln\left(lim\left[1 - \frac{1}{y}\right] \right)= ln(1) = 0](/latexrender/pictures/1853f56e3a0f8849164dc677fc589fc4.png)
.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites notáveis]exercício
por fff » Seg Fev 10, 2014 19:35
- 2 Respostas
- 1613 Exibições
- Última mensagem por fff

Ter Fev 11, 2014 14:57
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Calcular 2 limites notáveis
por fff » Sex Abr 11, 2014 14:26
- 4 Respostas
- 2313 Exibições
- Última mensagem por fff

Sex Abr 11, 2014 19:12
Cálculo: Limites, Derivadas e Integrais
-
- Limites Notáveis
por spoof » Qui Out 14, 2010 11:23
- 2 Respostas
- 4960 Exibições
- Última mensagem por spoof

Sex Out 15, 2010 14:20
Cálculo: Limites, Derivadas e Integrais
-
- Limites notáveis
por anamendes » Sáb Abr 28, 2012 08:06
- 2 Respostas
- 1949 Exibições
- Última mensagem por anamendes

Sáb Abr 28, 2012 11:15
Cálculo: Limites, Derivadas e Integrais
-
- Limites Notáveis
por CarinafILIPA » Sex Fev 28, 2014 19:08
- 2 Respostas
- 1718 Exibições
- Última mensagem por young_jedi

Sáb Mar 01, 2014 13:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
função demanda
Autor:
ssousa3 - Dom Abr 03, 2011 20:55
alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear
Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato
Assunto:
função demanda
Autor:
ssousa3 - Seg Abr 04, 2011 14:30
Gente alguém por favor me ensine a calcular a fórmula da função demanda

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.