• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida com problema sobre taxa de variação

Dúvida com problema sobre taxa de variação

Mensagempor arnoanderson » Sáb Nov 28, 2009 12:14

Estou com dificuldade no seguinte problema

Um quadrado de lado L está se expandindo segundo a equação:
l=2+t^2

onde t = 2
Preciso encontrar a taxa de variação.(Que é a derivada, não?)
Sei que o resultado é 48, porém derivando a função e multiplicando pelos lados do quadrado não chego nesse valor. Somente chego ao valor 48 quando aplico diretamente a função, sem aplicar a derivada. Queria saber porquê.

Obrigado

(Obs, coloquei no tópico errado)
arnoanderson
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 01, 2009 16:29
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Dúvida com problema sobre taxa de variação

Mensagempor Elcioschin » Sáb Nov 28, 2009 18:14

Acho que deve ser taxa de variação da área do quadrado, embora vc não tenha dito isto no enunciado:

L = 2 + t²

S = L² ----> S = (2 + t²)² ----> S = t^4 + 4*t² + 4

S' = 4*t³ + 8*t ----> S' = 4*(2³) + 4*(2²) ----> S' = 32 + 16 ----> S' = 48
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Dúvida com problema sobre taxa de variação

Mensagempor arnoanderson » Seg Nov 30, 2009 19:29

Oi Elcioschin.
É exatamente isso que você disse, taxa de variação da área do quadrado.
Tinha feito isso. O que me deixou na dúvida é que não derivei a função 2+t^2, mas sim apliquei diretamente. Acredito que a dúvida nesse caso é mais "conceitual" mesmo. Quando é solicitada taxa de variação não é necessário derivar a função? Ex.Y= 2+t^2 --> Y'=2*t (Que daria outro resultado, errôneo nesse caso)

Isso que não entendi.

Obrigado!
arnoanderson
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 01, 2009 16:29
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Dúvida com problema sobre taxa de variação

Mensagempor Elcioschin » Seg Nov 30, 2009 21:06

arnoanderson

Primeiro vamos relembrar algo básico: A área S de um quadrado de lado L é dada por S = L².

O lado do quadrado do seu problema é uma função dada por L(t) = 2 + t²
Esta função mostra como varia o lado do quadrado com o tempo: note que o lado aumenta com o tempo.

Se você derivar a função acima você estará calculando a "taxa de variação do LADO do quadrado".
O que o problema pede é a "taxa de variação da ÁREA do quadrado"
Assim, você está derivando a função ERRADA.

À medida em que o lado do quadrado vai aumentando, a área dele também vai aumentando.

A área S(t) do quadrado será uma NOVA função, dada por:

S(t) = [L(t)]² -----> S(t) = (2 + t²)² ----> S(t) = t^4 + 4*t² + 4

Para saber qual é a "taxa de variação da ÁREA do quadrado" deve-se derivar esta NOVA função S(t):

S '(t) = 4*t³ + 8*t

Para t = 2 a "taxa de variação da ÁREA" valerá ----> S '(2) = 4*2³ + 8*2 -----> S '(2) = 48

Deu para entender agora?
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59