por jccp » Dom Jan 19, 2014 13:49
''Teste a convergencia ou divergência da série:"
A)
![\sum_{}^{}\sqrt[2]{n+1}-\sqrt[2]{n} \sum_{}^{}\sqrt[2]{n+1}-\sqrt[2]{n}](/latexrender/pictures/2e82decf407cb04e1ff897b8627b5fba.png)
B)
![\sum_{}^{}\left[\sqrt[2]{n+1}-\sqrt[2]{n} \right]/n \sum_{}^{}\left[\sqrt[2]{n+1}-\sqrt[2]{n} \right]/n](/latexrender/pictures/65eaa001604104fa17b7b575b3530bff.png)
Apliquei o texte da divergencia e ela tendeu a zero, apliquei outros mas nao consegui.
-
jccp
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Out 06, 2013 14:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatua quimica
- Andamento: cursando
por Guilherme Pimentel » Dom Jan 19, 2014 23:51
[A]

[B]

-
Guilherme Pimentel
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Dom Jan 12, 2014 19:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Economia
- Andamento: formado
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Convergência de série
por ThallesAlencar » Seg Abr 08, 2013 14:47
- 2 Respostas
- 1685 Exibições
- Última mensagem por ThallesAlencar

Ter Abr 09, 2013 09:01
Cálculo: Limites, Derivadas e Integrais
-
- [Sucessão e Série de funções] Convergência
por Bravim » Sex Mar 21, 2014 20:10
- 0 Respostas
- 1355 Exibições
- Última mensagem por Bravim

Sex Mar 21, 2014 20:10
Progressões
-
- [SÉRIE] teste de comparação para convergência
por magellanicLMC » Ter Jan 28, 2014 20:47
- 5 Respostas
- 5123 Exibições
- Última mensagem por e8group

Sáb Fev 01, 2014 19:03
Sequências
-
- [Série] Calcular valor de série tendo outra como referência
por robmenas » Dom Abr 07, 2019 14:35
- 0 Respostas
- 8523 Exibições
- Última mensagem por robmenas

Dom Abr 07, 2019 14:35
Sequências
-
- [série de Euler / problema da Basiléia] Série de Fourier
por Burnys » Qua Jul 16, 2008 14:34
- 4 Respostas
- 8852 Exibições
- Última mensagem por admin

Qui Jul 17, 2008 00:33
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.