• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Distribuição de Probabibilidade] URGENTE!

[Distribuição de Probabibilidade] URGENTE!

Mensagempor Isa123 » Qui Jan 02, 2014 10:06

Uma caixa contém bolas vermelhas e bolas azuis, num total de 10 bolas.
Considera a experiência que consiste na extração sucessiva, com reposição, de duas bolas.
Seja X a variável que representa o número de bolas vermelhas extraídas.
No gráfico representa-se a distribuição de probabilidades da variável X.

Imagem

4.1. Representa a distribuição da variável X por uma tabela.
4.2. Representa, através de uma tabela, a distribuição de probabilidade da variável Y: “número de bolas azuis extraídas”.
4.3. Quantas bolas azuis e vermelhas tem a caixa? Justifica a tua resposta.
Isa123
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Ter Dez 10, 2013 21:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Distribuição de Probabibilidade] URGENTE!

Mensagempor Isa123 » Sex Jan 03, 2014 20:58

Ajudem me por favor!! Obrigado!
Isa123
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Ter Dez 10, 2013 21:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.