por Gabriel Doria » Qui Dez 26, 2013 17:22
Calcule

sabendo que, para todo x>1,

-
Gabriel Doria
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Dez 11, 2011 00:42
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Qui Dez 26, 2013 22:33
Tem certeza que não há erro no enunciado ? Na forma que o mesmo foi postado não há como computar o limite em questão , só dá p/ mostrar que o mesmo é finito .
Justificativa :
Mostremos que é possível determinar pelo menos duas funções que satisfaz a desigualdade dada e possui limites distintos quando x tende 1 pela direita .
Como

,ao dividimos a desigualdade por

obteremos

.
Segundo ,definimos as funções

dadas por

e
Pode verificar-se que ambas satisfazem a desigualdade dada e além disso

.
Há outras possibilidades ... Se definirmos

.(a_{ij} ,c constantes fixadas ) [i=0,1,2,...] .Pondo ,

(ambos positivos) e

. Impondo que o primeiro o limite seja igual a

e para certas escolhas

(que condiz com nossa hipótese ) será possível determinar as constantes

e portanto

estará bem definido ...
Na minha opinião o argumento acima garante que não há a dizer sobre

,exceto se há mais informações sobre

e se o enunciado está incorreto .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercicio propsto-EPUSP-1940
por adauto martins » Qui Set 25, 2014 19:56
- 2 Respostas
- 1444 Exibições
- Última mensagem por adauto martins

Qua Out 01, 2014 20:17
Equações
-
- [limites] reciso de ajuda nessa questão de limites raiz quad
por alexia » Ter Nov 15, 2011 19:55
- 1 Respostas
- 5408 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:16
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]Preciso de ajuda para calcular alguns limites
por Pessoa Estranha » Ter Jul 16, 2013 17:15
- 2 Respostas
- 4754 Exibições
- Última mensagem por LuizAquino

Qua Jul 17, 2013 09:12
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4782 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [limites] exercicio de calculo envolvendo limites
por lucasdemirand » Qua Jul 10, 2013 00:45
- 1 Respostas
- 4808 Exibições
- Última mensagem por e8group

Sáb Jul 20, 2013 13:08
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.