• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Série

Série

Mensagempor jccp » Seg Dez 16, 2013 01:44

\sum_{}^{}1/lnx{}^{lnx} Apliquei as proprideades erradas de logarítimo, depois tentei usar o teste da comparação, e acabei não conseguindo fazer a questão. Me dá uma foça aí. Vlw
jccp
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 06, 2013 14:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatua quimica
Andamento: cursando

Re: Série

Mensagempor Russman » Seg Dez 16, 2013 18:26

O que você quer fazer ou saber sobre isso? O que você escreveu não tem sentido...
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Série

Mensagempor jccp » Seg Dez 16, 2013 20:01

Gostaria de saber se a série converge ou diverge
jccp
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 06, 2013 14:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatua quimica
Andamento: cursando

Re: Série

Mensagempor Russman » Seg Dez 16, 2013 20:19

Faça o teste da comparação com \sum_{n=1}^{\infty } \left ( \frac{1}{n} \right )^n.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)