• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[transformações lineares] matriz do operador

[transformações lineares] matriz do operador

Mensagempor Tathiclau » Sáb Dez 14, 2013 14:32

Determine a matriz do operador T : R² -> R² relativamente a base a = (1, 1), (-1, 1),
sabendo que T(-7, 4) = (2, 3) e T(6, 1) = (4, 5).
Tathiclau
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Dez 11, 2013 23:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: [transformações lineares] matriz do operador

Mensagempor e8group » Dom Dez 15, 2013 11:25

Acho que queria dizer A  = \{(1,1) ,(-1,1) \} . A primeira coisa que deve se perguntar o conjunto B = \{(-7,4) ,(6,1) \} é L.I. ? R. sim é L.I. e não é necessário tomar combinação linear nula, basta notar que eles não são múltiplos escalares . Segundo , através de um resultado da A.L. vide viewtopic.php?f=117&t=13470 , podemos afirmar que B constitui uma base ordenada para o \mathbb{R}^2 .Como sabemos o que o operador T faz com os vetores de B ,é possível determina-lo (basta reescrever (x,y) como combinação linear dos vetores de B e em seguida aplicar o operador T e usar a linearidade dele ) .
Em resumo , para este exercício apenas precisávamos verificar se B é uma base p/ \mathbb{R}^2 ,como ele é , então deverás escrever T(-7,4) e T(6,1) como combinação linear dos vetores de A .

Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59