por silviopuc » Qui Dez 12, 2013 22:12
Boa noite,
Esse exercício eu não soube nem iniciar.
Se A é um conjunto não vazio então uma operação binária em A é uma função

. Qual é o número de operações binárias em um conjunto A com p elementos?
a)

b)

c)

d)

e)

Gabarito: C
-
silviopuc
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Jan 15, 2013 12:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Sex Dez 13, 2013 00:01
Não tenho certeza se estar correto ,mas obtive como resposta

,de qualquer forma vou postar o que pensei .
Defina

tal que para cada par ordenado em

fixado, tem-se

.Como

e para cada par ordenado (x,y) é possível definir

operações binárias em A ,então ao todo é possível definir

operações binárias em A .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Qua Dez 18, 2013 22:45
Está errado . Sejam

conjuntos com respectivas cardinalidades

. Defina

e mostremos que há

aplicações do conjunto

ao

.
Suponha

e

.
Veja o esquema a figura abaixo :

segmentos de retas verticais com as possíveis imagens pela aplicação :
Parti

(L_1) e chegar em

(em L_2) significar que é possível definir uma aplicação tal que

é levado a imagem

e

é levado a imagem

. Uma aplicação ficará bem determinada quando escolhemos um caminho que nos conecta de um ponto de

ao outro de

(i=1,... p-1) .
Objetivo migar de

e

ao longo de

:
Partindo de

há

formas de chegar em

pelo que também há

maneiras de chegar em

,..., e o mesmo para chegar em

de

. Por estes esquema há

(p-vezes) de executar

e portanto há

aplicações do conjunto

ao

.
Daí em particular para

e

teremos

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida,relação binária
por ibatexano » Sex Set 18, 2009 16:15
- 2 Respostas
- 5876 Exibições
- Última mensagem por ibatexano

Sex Set 18, 2009 23:14
Álgebra
-
- Relação binária
por MaiSantos » Sex Set 09, 2011 10:48
- 0 Respostas
- 1680 Exibições
- Última mensagem por MaiSantos

Sex Set 09, 2011 10:48
Funções
-
- Relação Binária
por abagadaia » Dom Dez 11, 2011 19:37
- 1 Respostas
- 1970 Exibições
- Última mensagem por abagadaia

Dom Dez 11, 2011 21:47
Álgebra Elementar
-
- Funções:Relação Binária
por +Julia » Sáb Abr 12, 2014 09:49
- 0 Respostas
- 2171 Exibições
- Última mensagem por +Julia

Sáb Abr 12, 2014 09:49
Funções
-
- Funções:Gráficos R e R-1 e Relação Binária
por +Julia » Sáb Abr 12, 2014 09:57
- 0 Respostas
- 2425 Exibições
- Última mensagem por +Julia

Sáb Abr 12, 2014 09:57
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.