por Tathiclau » Qua Dez 11, 2013 23:22
Determine o ponto do plano x+2y-z=4 que se encontra mais próximo da origem.
Obs: Eu ja vi resoluções usando geometria analítica, mas eu queria uma resolução usando máximos e mínimos de funções de duas variáveis, sem usar Lagrange tbm.
-
Tathiclau
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qua Dez 11, 2013 23:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [maximos e minimos] Função de duas variaveis
por amigao » Ter Nov 26, 2013 19:41
- 0 Respostas
- 868 Exibições
- Última mensagem por amigao

Ter Nov 26, 2013 19:41
Cálculo: Limites, Derivadas e Integrais
-
- Funções - Máximos e minimos relativos e absolutos
por asl14 » Qua Set 08, 2010 13:32
- 0 Respostas
- 1274 Exibições
- Última mensagem por asl14

Qua Set 08, 2010 13:32
Funções
-
- [maximos e minimos] Problemas de minimos e maximos
por amigao » Seg Jun 24, 2013 22:28
- 1 Respostas
- 3807 Exibições
- Última mensagem por young_jedi

Ter Jun 25, 2013 17:49
Cálculo: Limites, Derivadas e Integrais
-
- [Dúvida]Gráficos de funções com duas variáveis.
por Santa Lucci » Dom Mar 13, 2011 16:58
- 2 Respostas
- 2316 Exibições
- Última mensagem por Santa Lucci

Dom Mar 13, 2011 21:55
Cálculo: Limites, Derivadas e Integrais
-
- Funções de duas variáveis - Problemas (editado)
por Aprendiz2012 » Qui Set 20, 2012 12:48
- 1 Respostas
- 1450 Exibições
- Última mensagem por MarceloFantini

Qui Set 20, 2012 13:19
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.