por JauM » Qua Dez 04, 2013 14:15
Seja V um espaço vetorial. Dado um subconjunto
![S\neq\left[ \right] S\neq\left[ \right]](/latexrender/pictures/5c19e7b45949d4fb0cbebe538599370b.png)
de V, provar que a intersecção
de todos os sub-espaços vetoriais de V que contêm S também é um sub-espaço vetorial
de V, sendo o menor sub-espaço de V que contém S.
Minha tentativa foi basicamente tentar a demonstração através da definição de sub-espaço, ou seja:
Seja W = { W1

W2...

Wn} a intersecção de todos os sub-espaços vetoriais de V, tal que S

W, temos:
a) 0

W, pois por hipotese W é sub-espaço, logo 0

S.
b) Seja u e v

W. u + v

W, logo u + v

S.
c) Seja x

, e u

W, logo xu

W e portanto xu

S.
Acho que essa demonstração está errada, e não sei como demonstrar que W é o menor sub-espaço de V. Se poderem me ajudar eu agradeço.
-
JauM
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Dez 03, 2013 22:01
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Licenciatura em Matematica
- Andamento: cursando
por e8group » Qua Dez 04, 2013 16:15
Bom na minha opinião você errou em dizer " w por hipótese é sub-espaço vetorial de V " ,pois queremos exatamente mostrar-se que W é sub-espaço vetorial de V . Seguindo sua linha de raciocínio , sejam

sub-espaços vetoriais de

os quais contém o subconjunto

de

.Prosseguindo, o menor subconjunto de

que contém

é o próprio

,mas
não necessariamente ele será sub-espaço de

.Provando-se que interseção de sub-espaços é também sub-espaço, poderemos afirmar que

que contém

e estar contido em todos

será o menor sub-espaço de

,ou seja ,

.
Agora é só mostrar que

é sub-espaço de

.
Dica : Utilize a hipótese de

serem sub-espaços de

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por JauM » Qui Dez 05, 2013 14:37
Valeu, muito obrigado pela ajuda.
-
JauM
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Dez 03, 2013 22:01
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Licenciatura em Matematica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Espaço vetorial
por amr » Sex Abr 01, 2011 15:30
- 4 Respostas
- 7837 Exibições
- Última mensagem por Rosi7

Sáb Mai 30, 2015 00:16
Introdução à Álgebra Linear
-
- Espaço vetorial
por oliveiramerika » Sáb Jan 19, 2013 10:03
- 1 Respostas
- 5822 Exibições
- Última mensagem por young_jedi

Dom Jan 20, 2013 09:29
Álgebra Linear
-
- Espaço Vetorial
por manuel_pato1 » Sáb Mar 02, 2013 20:03
- 0 Respostas
- 1791 Exibições
- Última mensagem por manuel_pato1

Sáb Mar 02, 2013 20:03
Álgebra Linear
-
- Espaço Vetorial
por erickm93 » Qui Out 17, 2013 16:48
- 0 Respostas
- 1629 Exibições
- Última mensagem por erickm93

Qui Out 17, 2013 16:48
Álgebra Linear
-
- Espaço Vetorial
por Razoli » Qua Jan 08, 2014 16:25
- 6 Respostas
- 5499 Exibições
- Última mensagem por Razoli

Qui Jan 09, 2014 13:33
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.