• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração de conjnuntos

Demonstração de conjnuntos

Mensagempor Ovelha » Qua Nov 27, 2013 13:03

conituando topico anterior tem mais essa

Se A \cap B=\phi então A \cap {B}^{c}=A

Seja x \in (A \cap B)=\phi\Rightarrow} x \in A e x \notin B
x \in (A \cap B)=\phi\Rightarrow} x \notin A e x e x \in B. Daí x \in (A \cap B) e x \notin (A \cap B). Contradição

Agradeço desde já a compreensão e ajuda de todos
Ovelha
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Nov 13, 2013 11:04
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em física
Andamento: cursando

Re: Demonstração de conjnuntos

Mensagempor e8group » Qua Nov 27, 2013 14:30

Na minha opinião ,novamente você errou no inicio em dizer que " seja x\in (A\cap B) = \varnothing " . Ora , se por hipótese A\cap B = \varnothing então não podemos ter x pertencendo a este conjunto .

Tenho uma dica :

Trivialmente A\cap B^C  \subset A , então basta mostra que A\subset A\cap B^C para concluir que A= A\cap B^C .

Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Demonstração de conjnuntos

Mensagempor Ovelha » Qua Nov 27, 2013 16:13

Olá. No caso dessa questão eu já havia entendido a interseção não daria certo apenas mostrei que seria contradição dizer isso a ideia era mostra a contradição então peço que mostre como ficaria o que vc está falando.
Ovelha
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Nov 13, 2013 11:04
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em física
Andamento: cursando

Re: Demonstração de conjnuntos

Mensagempor e8group » Qua Nov 27, 2013 16:33

OK . Vamos tentar .

Dado x em A ,temos que x não pertence a B (pois por hipótese A,B são disjuntos ) . Desta forma, concluímos que x pertence a interseção de A com B^C e como x é genérico, mostramos A \subset A\cap B^C e assim o resultado segue .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Demonstração de conjnuntos

Mensagempor Ovelha » Qua Nov 27, 2013 16:41

Obrigado
Ovelha
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Nov 13, 2013 11:04
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em física
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.