• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração de conjnuntos

Demonstração de conjnuntos

Mensagempor Ovelha » Qua Nov 27, 2013 13:03

conituando topico anterior tem mais essa

Se A \cap B=\phi então A \cap {B}^{c}=A

Seja x \in (A \cap B)=\phi\Rightarrow} x \in A e x \notin B
x \in (A \cap B)=\phi\Rightarrow} x \notin A e x e x \in B. Daí x \in (A \cap B) e x \notin (A \cap B). Contradição

Agradeço desde já a compreensão e ajuda de todos
Ovelha
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Nov 13, 2013 11:04
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em física
Andamento: cursando

Re: Demonstração de conjnuntos

Mensagempor e8group » Qua Nov 27, 2013 14:30

Na minha opinião ,novamente você errou no inicio em dizer que " seja x\in (A\cap B) = \varnothing " . Ora , se por hipótese A\cap B = \varnothing então não podemos ter x pertencendo a este conjunto .

Tenho uma dica :

Trivialmente A\cap B^C  \subset A , então basta mostra que A\subset A\cap B^C para concluir que A= A\cap B^C .

Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Demonstração de conjnuntos

Mensagempor Ovelha » Qua Nov 27, 2013 16:13

Olá. No caso dessa questão eu já havia entendido a interseção não daria certo apenas mostrei que seria contradição dizer isso a ideia era mostra a contradição então peço que mostre como ficaria o que vc está falando.
Ovelha
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Nov 13, 2013 11:04
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em física
Andamento: cursando

Re: Demonstração de conjnuntos

Mensagempor e8group » Qua Nov 27, 2013 16:33

OK . Vamos tentar .

Dado x em A ,temos que x não pertence a B (pois por hipótese A,B são disjuntos ) . Desta forma, concluímos que x pertence a interseção de A com B^C e como x é genérico, mostramos A \subset A\cap B^C e assim o resultado segue .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Demonstração de conjnuntos

Mensagempor Ovelha » Qua Nov 27, 2013 16:41

Obrigado
Ovelha
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Nov 13, 2013 11:04
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em física
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59