• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral de fração racional] Deduza uma formiula para:

[Integral de fração racional] Deduza uma formiula para:

Mensagempor Job1992 » Ter Nov 26, 2013 22:29

Deduza uma formula para integral f(x)=\int_ \frac{Ax+B}{(x^2+bx+c)^n}dx, com b^2-4c<0

Obs: Isso vai chegar em uma formula de recorrencia.
Job1992
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Nov 26, 2013 22:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Integral de fração racional] Deduza uma formiula para:

Mensagempor e8group » Sáb Nov 30, 2013 21:27

Vamos trabalhar no denominador ,

q(x) := ax^2+bx+ c = a(x + \frac{b}{2a})^2 + c - \frac{b^2}{4a} = a(x + \frac{b}{2a})^2  + \frac{4ac-b^2}{4ac} (1) . Dividimos q(x) por a :

\frac{q(x)}{a} = (x + \frac{b}{2a})^2  + \frac{4ac-b^2}{4a^2c} . (2)

Agora para simplificar as notações definamos e = \frac{b}{2a} e g = \frac{4ac-b^2}{4a^2c} (3) . Assim ,temos

\frac{q(x)}{a} = (x + e)^2  + g (4) e dividindo-se ambos lados por g ,

\frac{q(x)}{ag} = \left(\frac{x+e}{\sqrt{g}}\right)^2 + 1(5) ou ainda por mudança de variável \frac{x+e}{\sqrt{g}} = t (6) ,

\frac{q(x)}{ag} = t^2 + 1 (7) . Veja o que conseguimos até agora ,

\frac{Ax+B}{(q(x))^n} = \frac{Ax+B}{(ag\dfrac{q(x)}{ag})^n} = \frac{1}{(ag)^n} \left(A \frac{x}{\left( \dfrac{q(x)}{ag}\right )^n}  +   \frac{B}{\left( \dfrac{q(x)}{ag}\right )^n} \right ) (8)


[Unparseable or potentially dangerous latex formula. Error 5 : 791x83] . (9) .

Considere L_1 =\int\frac{x}{\left( \dfrac{q(x)}{ag}\right )^n}dx e L_2 = \int \frac{1}{\left( \dfrac{q(x)}{ag}\right )^n} dx (10) .

A derivada de (6) nos dá \frac{1}{g^{1/2}}dx = dt \implies dx = g^{1/2}  dt e escrevendo x como função de t em (6) , x = g^{1/2} t -e ,utilizando estas relações em (10), segue



L_1 = g \int\frac{g^{1/2} t-e}{\left( t^2+1\right)^n}dt = g^{3/2} \int \frac{t}{(t^2+1)^n} dt - ge \int \frac{1}{(t^2+1)^n} dt . A primeira integral sabemos calcular , qual a resposta ? Já a segunda é mais trabalhosa .

Defina I_n = \int \frac{1}{(t^2+1)^n} .Usando integração por partes podemos obter a fórmula(tente fazer )

I_n = \frac{t}{2(n-1)(t^2+1)^{n-1}} + \frac{2n-3}{2(n-1)} I_{n-1} .

Desta forma L_1 está determinado . e L_2 pode ser determinado pela fórmula de recorrência .

É isso ,espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)