• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor thadeu » Ter Nov 24, 2009 20:42

O valor do limite \lim_{x \to 0}\frac{sen^52x}{4x^5} é:

a) 1
b) 3
c) 4
d) 6
e) 8
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite

Mensagempor Molina » Qua Nov 25, 2009 14:51

Boa tarde, Thadeu.

Se possível confirmar o resultado, ok?

Logo que vi a questão fiquei com impressão que tratava-se de limite fundamental trigonométrico. E estava certo! :-D

\lim_{x \to 0}\frac{sen^52x}{4x^5}

\lim_{x \to 0}\frac{2^3*sen^52x}{2^3*2^2*x^5}

2^3* \lim_{x \to 0}\frac{sen^52x}{2^5*x^5}

8* \lim_{x \to 0}\left( \frac{sen2x}{2x} \right)^5

Considerando 2x=u. Note que quando x \to 0, u \to 0

8* \lim_{u \to 0}\left( \frac{senu}{u} \right)^5 (limite fundamental)

8 * (1)^5=8*1=8
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limite

Mensagempor thadeu » Qua Nov 25, 2009 15:20

Perfeito!
Grande abraço!
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Cálculo de "mmc"

Mensagempor shirata » Qua Nov 25, 2009 17:05

Bem... interrompendo a resolução do exrcício de vcs ai, gostaria só de tirar uma pequena dúvida...

minha dúvida é relativamente boba, quando temos frações em que os divisores são produtos notáveis diferentes como encontro o "mmc"?

a expressão em questão é \frac{GMm}{{(R - r}^{2}} - \frac{GMm}{{R}^{2}}, como encontro o denominador comum dessas frações para efetuar a subtração?

grato desde já pela atenção...
shirata
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 05, 2009 11:25
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite

Mensagempor thadeu » Qua Nov 25, 2009 17:14

Shirata, você deve se lembrar que o mmc entre valores primos (que não têm divisores comuns diferente de 1), é sempre o produto entre esses valores.

Exemplos de mmc entre:

a)\,\,\,4\,\,\,e\,\,\,9\,\,\,\Rightarrow\,mmc=4\,\times\,9=36

b)\,\,\,x^2\,\,\,e\,\,\,x^2-1\,\,\,\Rightarrow\,mmc=x^2(x^2-1)

No seu caso, os denominadores são primos entre si, ou seja, eles não têm divisores comuns; logo, o mmc é o produto entre eles:

mmc(R-r^2\,,\,\,R^2)=(R-r^2)\,.\,(R^2)
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: mmc

Mensagempor shirata » Qua Nov 25, 2009 17:55

... valeu kra! ... pode deixa que agora eu não esqueço mais!
shirata
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 05, 2009 11:25
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D