• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Potenciação]

[Potenciação]

Mensagempor b_afa » Sáb Nov 23, 2013 15:06

expressaoradicais.png


O cara elevou os dois lados a sétima potência para tirar a raiz,só não entendi da onde veio o 5^{16}
b_afa
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Nov 15, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando \o/
Andamento: cursando

Re: [Potenciação]

Mensagempor DanielFerreira » Seg Nov 25, 2013 00:02

Certamente, houve um erro de digitação no enunciado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Potenciação]

Mensagempor b_afa » Seg Nov 25, 2013 10:45

danjr5 escreveu:Certamente, houve um erro de digitação no enunciado!

O enunciado e a resolução são só esses
b_afa
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Nov 15, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando \o/
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}