• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Técnicas de integração - multiplicando pelo fator unitário

Técnicas de integração - multiplicando pelo fator unitário

Mensagempor Victor Mello » Qui Nov 21, 2013 18:37

Galera, eu estou vendo essa integral \int\frac{1}{1+senx}dx. Ela parece ser simples, e único jeito de simplificar essa integral é multiplicar pelo fator unitário, mas infelizmente eu não estou conseguindo pensar um fator unitário que possa cair numa integral que dá para fazer pela substituição por mudança de variável logo em seguida. Eu já tentei multiplicar pelo \frac{-cosx}{-cosx} e não deu certo a substituição por mudança de variável. Mas estou pensando outras alternativas. Sei lá, pode ser que uma das identidades trigonométricas me ajude, mas a ideia não chega, infelizmente. Alguém poderia me sugerir algum fator unitário que possa simplificar essa integral, ou algum detalhe que dê certo em algumas ocasiões?

Obrigado! :-D
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Técnicas de integração - multiplicando pelo fator unitár

Mensagempor Pessoa Estranha » Qui Nov 21, 2013 20:48

Olá !

Você poderia multiplicar o numerador e o denominador pelo conjugado de (1 + senx) , ou seja, por (1 - senx). Fiz um rascunho para ver se ajudava um pouco e, então, cheguei a isto:

\int_{}^{} \left( \frac{1}{{cos}^{2}x} - \frac{senx}{{cos}^{2}x} \right)

Pode ser que ajude, mas é só uma sugestão ....
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Técnicas de integração - multiplicando pelo fator unitár

Mensagempor Victor Mello » Qui Nov 21, 2013 23:27

Ahh sim, verdade! Deu certo agora, valeu pela sugestão! :y:
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59