• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais e área entre curvas

Integrais e área entre curvas

Mensagempor Victor Mello » Ter Nov 19, 2013 21:58

Galera, tentei achar a área dessa curva que deixei em anexo, e eu não consegui encontrar a resposta correta. O gabarito deu 128/15, e eu achei 64/5. Alguém poderia dizer onde ocorreu o erro? Bom, se alguém puder, eu agradeço ;) Em breve, mais dúvidas sendo postadas.

Obrigado.
Anexos
Sem título.png
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Integrais e área entre curvas

Mensagempor e8group » Ter Nov 19, 2013 23:30

Analisando parte da região no primeiro quadrante ,podemos calcular esta área por

\int_{0}^2 2x^2 - [x^4-2x^2]  dx . Determinando o ponto x_0 entre 1 e 2 que satisfaz x^4-2x^2 = 0 segue que a área da outra parte da região no quarto quadrante pode-se calculada por - \int_{0}^{x_0} 4x^2-2x^2 dx (Sinal negativo pq a área está abaixo do eixo x ). Somando-se estes resultados e por simetria , a área da região será o dobro da soma acima .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integrais e área entre curvas

Mensagempor Victor Mello » Qua Nov 20, 2013 00:28

Ahh sim! Parece que agora estou pegando jeito. Eu acho que o meu erro foi por causa da integral negativa, esqueci desse detalhe. Na verdade eu somei as áreas dessas duas curvas sem perceber que a integral negativa indica que está abaixo do eixo x, por isso que deu errado. Valeu pela dica :y:
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: