• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Reta e Circunferência] UESB 2011.2

[Reta e Circunferência] UESB 2011.2

Mensagempor Leocondeuba » Ter Nov 05, 2013 22:05

Olá a todos. Esta questão eu tentei resolvê-la e marquei a alternativa 05). Porém, no gabarito diz que a certa é a 03). Logo, fiquei com dúvida em relação a esta questão. Obrigado a todos desde já.

Imagem

Wassily Kandisky foi um pinto escritor russo que se destacou pela qualidade de suas obras, bem como por introduzir a abstração nas artes visuais. (ARTEDUCA, 2011)

Na figura, ve-se uma de suas obras, Composição VIII, 1923. Óleo sobre tela, Museu Solomon R. Guggenheim, Nova Iorque. Nela, pode-se observar a presença de várias representações de circunferências e retas, algumas das quais com pontos comuns.

Supondo-se que, na figura, as duas retas r e s tenham equações r: 8x + 6y + 9 = 0 e s: 3x - 4y - 1 = 0 e uma circunferência ?: (x - 5)² + (y + 2)² = 16, pode-se afirmar que as posições relativas entre r e s e entre r e ? são, respectivamente,

01) retas paralelas e reta secante à circunferência
02) retas paralelas e reta tangente à circunferência
03) retas perpendiculares e reta secante à circunferência.
04) retas perpendiculares e reta tangente à circunferência
05) retas concorrentes não perpendiculares e reta exterior à circunferência
Leocondeuba
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mai 11, 2013 19:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.