por Crist » Qua Out 30, 2013 16:47
tenho a funçao, f(x) = 3 cos(x) - e^(-0.4x), fiz o metodo gráfico e preciso da raiz negativa que está entre [-2,-1], isso foi a letra a do exercício.
agora na letra b não consigo a resoluçao correta, pelo metodo de newton, precisava escolher uma boa aproximaçao , escolhi x0= -1, e nao dá certo .E a derivada, achei: f´(x) = -3 sen(x) +0.4e^(-0.4x)
deu 3 iteraçoes
x3= -2,7581 o que tá longe de estar certo, socorro alguém me ajuda por favor
é para hoje até as 11:30 h
-
Crist
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qua Out 24, 2012 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Qua Out 30, 2013 20:43
amigo utilizei a seguinte relação recursiva

apos tres interações cheguei em -1,04087
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Crist » Qua Out 30, 2013 23:29
usando x0 = -1?
tentei mas não dei conta , que tristeza, meu prazo acabou

-
Crist
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qua Out 24, 2012 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Qui Out 31, 2013 17:46
foi utilizando x0=-1
voce utilizou equação de recorrencia corretamente?
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Crist » Sex Nov 01, 2013 13:46
usei, desde o inicio, mas é que era uma tarefa muito longa e cansativa e essa questão eu me perdi nos cálculos e com isso o prazo terminou, postei minha tarefa sem essa resolução, fiquei muito triste e frustrada comigo , pois eu entendi a matéria, sabia o processo mas não consegui chegar na resposta. Obrigada pela ajuda.
-
Crist
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qua Out 24, 2012 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo Numérico] Método de Newton
por joaofernandes » Dom Jun 19, 2016 19:51
- 0 Respostas
- 1345 Exibições
- Última mensagem por joaofernandes

Dom Jun 19, 2016 19:51
Cálculo: Limites, Derivadas e Integrais
-
- [CÁLCULO NUMÉRICO] Método Bisseção
por NavegantePI » Dom Mar 06, 2016 23:17
- 0 Respostas
- 1155 Exibições
- Última mensagem por NavegantePI

Dom Mar 06, 2016 23:17
Equações
-
- [CÁLCULO NUMÉRICO] Método Bisseção
por NavegantePI » Dom Mar 06, 2016 23:21
- 0 Respostas
- 0 Exibições
- Última mensagem por Visitante

Qua Dez 31, 1969 22:00
Cálculo: Limites, Derivadas e Integrais
-
- [CÁLCULO NUMÉRICO] Método Bisseção
por NavegantePI » Dom Mar 06, 2016 23:21
- 0 Respostas
- 0 Exibições
- Última mensagem por Visitante

Qua Dez 31, 1969 22:00
Cálculo: Limites, Derivadas e Integrais
-
- [CÁLCULO NUMÉRICO] Método Bisseção
por NavegantePI » Dom Mar 06, 2016 23:21
- 0 Respostas
- 0 Exibições
- Última mensagem por Visitante

Qua Dez 31, 1969 22:00
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.