• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra 1

Álgebra 1

Mensagempor barbara-rabello » Dom Out 06, 2013 18:58

Boa tarde! Estou estudando critérios de divisibilidade e congruências e me deparei com o seguinte problema:

Preciso encontrar o resto da divisão de {7}^{99999} por 100.

Um professor me ajudando, me falou que era assim:

Como 99999 = 4.24444 + 3 e {7}^{4}\equiv 1 mod 100, temos que
({{7}^{4}})^{24444}\equiv 1 mod 100.
Portanto, {7}^{99999} = ({{7}^{4}})^{24444}.{7}^{3}\equiv 1.{7}^{3} mod 100 \equiv 43 mod 100.

Não conseguir entender esta solução para o problema. Alguém pode me ajudar?
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Álgebra 1

Mensagempor matmatco » Dom Dez 08, 2013 22:44

ele apenas reescreveu 99999 como 4.24444 + 3 mas isto está errado na verdade 99999= 4.2499+ 3 com isso usando congruência vemos que {7}^{4}\equiv 1 mod 100 logo reescrevendo temos {7}^{99999}\equiv {({7}^{4})}^{2499 + 3}={({7}^{4})}^{2499}.{({7}^{4})}^{3} e sabendo que {7}^{4}\equiv 1 mod 100 temos {7}^{99999}\equiv {({7}^{4})}^{2499 + 3}={({7}^{4})}^{2499}.{({7}^{4})}^{3}\equiv 1.{7}^{3}\equiv 343\equiv 43 mod 100.
espero ter ajudado abraços
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}