• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria - Relações entre razões trigonométricas

Trigonometria - Relações entre razões trigonométricas

Mensagempor METEOS » Seg Set 30, 2013 17:06

Bom dia, caros(as) membros deste fórum.

Como preparação para um teste, há dois exercícios do mesmo género de trigonometria que consistem em relacionar as razões trigonométricas, de forma a provar que um dos membros é igual ao outro.

Enunciado: Sendo x a amplitude de um ângulo agudo, mostra que:

1) sen x + \frac{cos x}{tg x} = \frac{1}{sen x}


2) \frac{cos^2 x}{1-sen x} - 1 = sen x

Gostaria que me indicassem a correcção, e posteriormente, truques para a resolução deste género de exercícios

Agradecido,

Luís Soares (couldzao).
METEOS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 30, 2013 17:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Ciencias
Andamento: cursando

Re: Trigonometria - Relações entre razões trigonométricas

Mensagempor Russman » Seg Set 30, 2013 17:41

Bata que você reduza os denominadores da expressões.

Na primeira, note que \tan (x) = \frac{\sin (x) }{\cos (x)}. Assim,

\sin(x) + \frac{\cos (x) }{\tan (x)} = \sin(x) + \frac{\cos (x) }{\frac{\sin (x) }{\cos (x)}} =\sin(x) + \frac{\cos^2 (x) }{\sin (x)} =
= \frac{\sin ^2 (x) + \cos ^2 (x)}{\sin (x)}  = \frac{1}{\sin (x)}.

Na segunda,

\frac{\cos^2 (x)}{1- \sin (x)} - 1 = \frac{\cos ^2 (x) - 1 + \sin (x)}{1- \sin (x)} = \frac{-\sin ^2 (x) + \sin (x) }{1 - \sin (x)}=
=\sin (x) .\left ( \frac{- \sin (x) + 1}{1 - \sin (x) } \right ) = \sin (x) (1) =  \sin (x)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.