• Anúncio Global
    Respostas
    Exibições
    Última mensagem

É muito difícil

É muito difícil

Mensagempor Thiago 86 » Dom Set 29, 2013 21:21

Sabe-se que -1 e 5 são raízes de uma função quadrática. Se o ponto (-2, -7) pertence ao gráfico dessa função então o seu valor máximo é:

Bem ,não sei nem como me mexer, gostaria que alguém me ensinasse como resolver esse tipo de questão.
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando

Re: É muito difícil

Mensagempor Russman » Dom Set 29, 2013 23:43

Toda função quadrática pode ser escrita como f(x) = a(x-x_1)(x-x_2), onde x_1 e x_2 são as raízes da mesma e a uma constante. Assim, a função é

f(x) = a(x+1)(x-5)

onde a pode ser calculado usando o ponto dado.

f(-2) = -7
a(-1)(-7) = -7
a=-1

Logo, f(x) = -(x+1)(x-5) = -x^2+4x+5
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: É muito difícil

Mensagempor Thiago 86 » Sex Out 04, 2013 10:11

Agradecido. :y:
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.