por raimundoocjr » Ter Set 24, 2013 20:40
(Livro: Cálculo - Volume 2 - 7ª Edição - Q. 31 - Pág.: 767) Determine as equações paramétricas da reta r tangente à curva d(t)=(t cost, t, t sent), t>0 ou t=0, no ponto P=(-pi, pi, 0). Esboce em um mesmo sistema de coordenadas retangular tridimensional a trajetória da curva d, o ponto P e a reta r.
Como faço isso?
-
raimundoocjr
-
por Russman » Ter Set 24, 2013 22:13
Lembre-se que o vetor diretor de uma reta tangente a uma curva é sempre perpendicular ao vetor normal da mesma. Ainda que para obter, por exemplo,

basta dividir

por

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por raimundoocjr » Qua Set 25, 2013 19:05
Não fiz um ensaio ou tratado da minha dúvida porque trata da própria essência da questão. Então, poderia deixar mais claro a resolução desse exercício em específico? As próximas atividades que forem semelhantes a essa, eu já faço com mais segurança. Obrigado por responder.
-
raimundoocjr
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equações cartesianas e equações paramétricas
por Victor Mello » Sáb Ago 23, 2014 16:24
- 1 Respostas
- 3232 Exibições
- Última mensagem por Russman

Sáb Ago 23, 2014 18:29
Funções
-
- Equaçoes parametricas
por angels900 » Ter Jan 31, 2012 14:35
- 6 Respostas
- 3456 Exibições
- Última mensagem por LuizAquino

Ter Jan 31, 2012 17:04
Geometria Analítica
-
- Equações paramétricas da curva
por kalschne » Qui Fev 16, 2012 20:51
- 3 Respostas
- 1933 Exibições
- Última mensagem por kalschne

Qui Fev 16, 2012 22:48
Geometria Analítica
-
- Faz sentido? Sistema e equações paramétricas.
por Dan » Ter Fev 01, 2011 14:39
- 4 Respostas
- 3480 Exibições
- Última mensagem por LuizAquino

Qua Fev 02, 2011 11:37
Sistemas de Equações
-
- Geometria Analítica Equações Paramétricas.
por lucat28 » Sex Set 16, 2011 19:08
- 1 Respostas
- 1299 Exibições
- Última mensagem por MarceloFantini

Sex Set 16, 2011 19:43
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.