• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por Partes

Integral por Partes

Mensagempor marinalcd » Qua Set 18, 2013 15:45

Tenho que resolver a seguinte integral pelo método de integração por partes:\int-{y}^{2}.e^{y}dy

Fiz assim:
u=y² ; du = 2y dy.
dv = -e^{y} ; v = -e^{y}.

Então a integral ficaria:
-y²e^{y} - \int-e^{y}.2ydy

resolvendo essa outra integral também por partes, cheguei em : 2ye^{y} - 2e^{y} +c.

Mas no gabarito está que a solução dessa última integral é 2ye^{y} - e^{y} +c.

Não consegui entender o porquê do 2 não estar multiplicando o exponencial. Alguém sabe me dizer?
Obrigada!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Integral por Partes

Mensagempor temujin » Sex Set 20, 2013 21:12

Olá.

Não tá faltando algo aí??

Veja:

u=y^2, u'=2y, v'=e^y, v=e^y

Logo,

-\int y^2e^ydy = -y^2e^y+\int 2ye^y dy

De novo por partes:

u=2y, u'=2, v'=e^y, v=e^y

Logo,

\\ -y^2e^y+\int 2ye^y dy = -y^2e^y+2ye^y-\int 2e^y dy = -y^2e^y+2ye^y-2e^y + C = -e^y(y^2-2y+2)+C
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.