por Thiago 86 » Seg Set 16, 2013 12:34
saudações, estou resolvendo uma função exponencial sobre altura de um triângulo, e estou com problema para me mexer. Segui-la:
Se a área do triângulo retângulo é 3n, sendo a altura dada por:

, eixo das ordenadas e a base do triângulo ser n eixo das absissas , concluí-se que f(n) é igual a:

, daqui eu não sei sair.
-
Thiago 86
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Seg Fev 11, 2013 18:55
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso técnico em enfermagem
- Andamento: cursando
por Pessoa Estranha » Seg Set 16, 2013 15:12
Olá. Olha, eu posso não ter entendido a sua questão, mas eu diria o seguinte:
Observe que, do meu ponto de vista, na verdade, você já encontrou a resposta, se é que é essa mesmo.... Digo isto pelo seguinte:
Seja ABC um triângulo retângulo em B, onde AB é a altura e CB a base. Temos, no enunciado, que a área dele é dada por

, ou seja,

e, daí:

. Ainda temos que a base é dada por

e a altura é dada por uma
função,

. Tudo isto nos diz que: a área é um número fixo e a base também, porém a altura pode variar conforme o valor de x. Por outro lado, note que se o exercício pede o valor de

, então está pedindo o valor que a função assume quando

, ou seja, está querendo o valor de

, que você já encontrou. Para ficar mais claro, veja que se substituir o valor 6 encontrado, você obtém a área, que já foi dada. Assim:

. Então:

.
Espero que esteja certo....Você tem a resposta ?? Se quiser perguntar alguma coisa, ou mesmo dizer que está tudo errado.... Apenas tentei ajudar.

Até mais....

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Thiago 86 » Ter Set 17, 2013 12:49
Meu brother, valeu pela opinião eu tava com dúvida se tinha ou não acertado a resposta, porém no gabarito a resposta não aparece "n".
-
Thiago 86
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Seg Fev 11, 2013 18:55
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso técnico em enfermagem
- Andamento: cursando
por Pessoa Estranha » Ter Set 17, 2013 15:28
Então a resposta é 6 mesmo ?
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Thiago 86 » Qui Set 19, 2013 13:03
Não tem seis no gabarito. Tem: 2 ,
![2\sqrt[]{2} 2\sqrt[]{2}](/latexrender/pictures/202687598843121ee5b0808a42feb662.png)
, 3 ,
![3\sqrt[]{3} 3\sqrt[]{3}](/latexrender/pictures/8f02447859000765689bdee72a9b79b7.png)
e 4.
-
Thiago 86
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Seg Fev 11, 2013 18:55
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso técnico em enfermagem
- Andamento: cursando
por Pessoa Estranha » Qui Set 19, 2013 17:50
Bom, então peço desculpas.... Eu realmente não sei.

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Thiago 86 » Sex Set 20, 2013 16:57
Vou perguntar a meu professor, depois coloco a resposta.

-
Thiago 86
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Seg Fev 11, 2013 18:55
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso técnico em enfermagem
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Cálculo I: Reta Tangente e Área da função.
por Jhonata » Ter Fev 26, 2013 12:47
- 1 Respostas
- 1374 Exibições
- Última mensagem por young_jedi

Sex Mar 01, 2013 22:22
Cálculo: Limites, Derivadas e Integrais
-
- [Função exponencial] Exercício sobre função exponencial
por fff » Ter Jan 07, 2014 17:51
- 3 Respostas
- 3879 Exibições
- Última mensagem por fff

Qua Jan 08, 2014 06:47
Funções
-
- [Desigualdade] entre função exponencial e função potência
por VitorFN » Sex Mai 26, 2017 15:18
- 1 Respostas
- 5416 Exibições
- Última mensagem por adauto martins

Sex Jul 07, 2017 12:17
Álgebra Elementar
-
- [calculo] derivada de exponencial
por beel » Sáb Out 15, 2011 22:20
- 4 Respostas
- 2676 Exibições
- Última mensagem por beel

Qua Out 19, 2011 11:18
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] derivada de exponencial e log
por beel » Dom Out 16, 2011 01:35
- 3 Respostas
- 1818 Exibições
- Última mensagem por Neperiano

Dom Out 16, 2011 18:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.