• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivando y

derivando y

Mensagempor Ana Maria da Silva » Sáb Set 14, 2013 17:13

Derevando y em relação a x, \frac{dy}{dx}, onde y é dado implicitamente pela equação,{-x}^{2}+{xy}^{2}+y=4 temos

a- \frac{dy}{dx}=\frac{xy+2}{2xy-1}

b- \frac{dy}{dx}=\frac{2xy+x}{2xy+1}

c- \frac{dy}{dx}=\frac{2x+{y}^{2}}{2xy-1}

d- \frac{dy}{dx}=\frac{2x-{y}^{2}}{2xy+1}

e- \frac{dy}{dx}=\frac{2x+{y}^{2}}{2xy-1}

Preciso ver o desenvolvimento agradeço!
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: derivando y

Mensagempor temujin » Sáb Set 14, 2013 18:28

Usando o teorema da função implícita:

\phi(x,y) = -x^2+xy^2+y-4

\frac{dy}{dx} = - \frac{\frac{\partial \phi}{\partial x}}{\frac{\partial \phi}{\partial y}} = - \frac{-2x+y^2}{2xy+1}=\frac{2x-y^2}{2xy+1}
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.