• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxa de variação instantânea.

Taxa de variação instantânea.

Mensagempor Sobreira » Ter Set 03, 2013 01:46

Meus caros,

Tenho uma dúvida a respeito do conceito de taxa de variação instantânea:
Não consigo visualizar/entender o conceito de taxa de variação instantânea na prática.
Sei que quando eu tenho uma função e faço o delta x ir para zero vou obter a tangente da função e etc.
Mas por exemplo, na definição de corrente elétrica, tenho:

I=dq/dt

Sei que é aquele clássico delta t de variação média, mas agora tendendo a zero justamente para termos a variação instantânea.
Mas, não consigo visualizar facilmente. Tento imaginar olhando um condutor em corte e marcando em um cronometro a quantidade de cargas que passam em determinado tempo.
Ou seja a variação de cargas é função da variação do tempo.
Mas quando há um problema ele me pede para verificar a corrente em um instante t, então derivo a função para encontrar a corrente I .Esta aí o que não entendo.Em um instante t eu não estaria vendo a quantidade de cargas neste tempo t "congelado" ?? porque estaria vendo a corrente elétrica ??
E depois para obter o processo inverso há a integração da equação, ou seja, q= integral da corrente em relação a dt. O que está integral está me fornecendo realmente ??
Estou tendo dificuldade em transferir estes conceitos do cálculo diferencial para a aplicação prática.
Desculpe o tamanho do post, e desde já obrigado!!
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Taxa de variação instantânea.

Mensagempor Russman » Ter Set 03, 2013 17:23

Esses diferenciais são difíceis de entender. Se você vê problema com eles fique feliz, pois isso significa que você os tenta entender realmente ao invés de engoli-los. De fato, os mesmo só foram entendidos completamente muitos anos depois da sua invenção.
Pois bem, você pode interpretar essas "taxas instantâneas" analogamente a fotografias. Um ponto acelerado em movimento retilíneo, por exemplo, tem uma velocidade diferente a cada instante de tempo. Isto é, se você o observa se movendo e captura uma fotografia(observa um instante de tempo "parado") irá medir sua velocidade sendo aquela para este tempo. Mas no tempo futuro, infinitesimalmente próximo, irá medi-la acrescida.
Se tratando de cargas se movendo em um condutor, se você tentar fazer essa analogia não irá se satisfazer. Não pq há problema em nossa matemática, mas sim pq pontos não existem no mundo físico. Pontos são objetos idealizados no mundo abstrato(matemático) e trazidos para o mundo físico sob a convenção de "tão pequeno quanto se queira". A corrente média é a quantidade de cargas que estão presentes em um certo comprimento do fio em um certo intervalo de tempo. A instantânea seria como se você reduzisse esse certo comprimento a um plano que corta o fio e as cargas estivessem exatamente sobre este plano no instante de tempo observado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?