• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas no espaço

Retas no espaço

Mensagempor Razoli » Sáb Ago 31, 2013 09:38

Pessoal, não consegui entender esse exercicio! como poderia resolve-lo? Alguem poderia me explicar?

1.Seja V = R^2

a)Ache w na reta x + y = 0 e u no eixo y tais que v = (-1,4) seja escrito como a soma de w + u;

b) Dê a representação de um elemento arbitrario v de V como soma w + u como em a)
Razoli
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Abr 06, 2013 15:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: Retas no espaço

Mensagempor e8group » Sáb Ago 31, 2013 20:49

Observe que w =(a,b) pertence a reta de equação x+y = 0 , então a+b = 0 e portanto b = -a (----> w=(a,-a)) .Por outro lado , o eixo y é a reta vertical x= 0 .Assim , se u pertence a este eixo então u = (0
,d) onde a,d são número fixados a ser determinados . Para concluir ,note que v(dado) se exprimir por w+u ,isto é ,

v = (-1,4) = w+u = (a,-a) + (0,d) . Agora é só fazer contas !

Sobre o item (b) pense mais um pouco e exponha o que tentou .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}