• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercício mdc - dúvida

exercício mdc - dúvida

Mensagempor Danilo » Sáb Ago 31, 2013 17:08

Sendo n um número maior que 1, verifique a seguinte desigualdade:

mdc (n! + 1, (n+1)! + 1) = 1.

Usando o algoritmo de euclides acho que consigo chegar lá... o problema é que eu SEMPRE me enrolo quando tem fatorial no meio... grato a quem puder dar uma luz...
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: exercício mdc - dúvida

Mensagempor e8group » Sáb Ago 31, 2013 20:37

Conseguir resolver da seguinte forma ,tome k = mdc(a,b) ,onde b = (n+1)! + 1 = n!(n+1) + 1 e a = n! + 1 . Ora ,se (i) k divide a e b então k divide (b-a) [é fácil ver !] . Como b-a = n!(n+1) + 1 - [n! + 1] = n!(n+1 - 1) = n n! = n^2 (n-1)(n-2) ... 1 concluímos que sendo (i) verdadeiro implica k divide n^2 (n-1)(n-2) ... 1 (ii) .Se tivéssemos k != 1 , a divisão dos números a e b por k deixaria resto 1 (pois (ii) é verdadeiro), contrariando a divisibilidade dos números a e b por k ,assim segue que k = 1 ,i.e , mdc(a,b) = 1 .Por favor exponha o que você tentou , acha que minha solução está correta ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}