por matano2104 » Qui Ago 29, 2013 18:30
Olá, estou com dúvidas em exercícios que ele da uma certa potencia e pede pra descobrir quantos algarismos tem.
O exercício que eu tenho aqui como tarefa de casa é o seguinte:

* não sei porque mas não está pegando o latex então vou escrever da maneira antiga, 2^20.5^16.
Eu sei que para começar esse exercícios precisa passar pra base 10 mas, não estou conseguindo queria a ajuda de uma pessoa para resolver esse exercício acho que os outros eu consigo resolver.Obrigado desde já.
-
matano2104
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Ago 29, 2013 18:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Qui Ago 29, 2013 22:07
2^20.5^16
Note que 2.5 = 10. Assim, (2.5)^n = 10^n ==> 2^n . 5n = 10^n . Logo,
2^20 . 5^16 = 2^16 . 5^16 . 2^4 = 10^16 . 2^4
Note que
10^0 = 1
10^1 = 10
10^2 = 100
.
.
.
ou seja, 10^n tem n+1 algarismos.
Como 2^4 = (2^2)^2 = 4^2 = 16, e 16 = 10+6, então
2^20 . 5^16 = 2^16 . 5^16 . 2^4 = 10^16 . 2^4 =10^16 . (10+6) = 10^17 + 6.10^16
Logo o número tem 17+1 = 18 dígitos, pois o termo +6.10^16 irá acrescentar um "6" na 17° casa onde tinha um 0...e como 6<10 não acrescenta algarismo adicional nenhum.
Acho q é isso.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Quantos números de três algarismos existem?
por andersontricordiano » Qui Dez 01, 2011 12:00
- 1 Respostas
- 10831 Exibições
- Última mensagem por TheoFerraz

Qui Dez 01, 2011 13:36
Estatística
-
- Quantos algarismos distintos são maiores e menores que 5643
por andersontricordiano » Sex Jan 06, 2012 16:29
- 1 Respostas
- 1429 Exibições
- Última mensagem por Arkanus Darondra

Sex Jan 06, 2012 17:57
Estatística
-
- Calcule quantos algarismos são maiores e menores que 37517
por andersontricordiano » Qua Fev 19, 2014 19:05
- 1 Respostas
- 1629 Exibições
- Última mensagem por DanielFerreira

Qui Fev 20, 2014 18:02
Análise Combinatória
-
- [Multiplicação] Numero de algarismos de um produto
por xerebede » Qui Abr 04, 2013 17:23
- 3 Respostas
- 4193 Exibições
- Última mensagem por DanielFerreira

Qui Abr 18, 2013 10:34
Álgebra Elementar
-
- Contagem - número algarismos página de livro
por remoreiraaa » Sáb Jan 02, 2010 22:43
- 2 Respostas
- 9870 Exibições
- Última mensagem por elsouza

Dom Jan 03, 2010 08:45
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.