• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de viga com função.

Calculo de viga com função.

Mensagempor karenblond » Qui Ago 29, 2013 00:06

imagem p.png
imagem p.png (7.11 KiB) Exibido 11700 vezes
NA figura seguinte está representada uma viga reta AB, que sustenta um arco AB de parábola, construído de ferro e apoiado em hastes verticais. A largura L do vão é de 40 m e a flecha f do arco de parábola tem 5 m. Sabendo que as hastes verticais são igualmente espaçadas no vão, calcule seus comprimentos Y1, y2 e y3. Gente se vcs puderem me ensinar passo a passo obrigada.
karenblond
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qua Mar 24, 2010 14:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calculo de viga com função.

Mensagempor Russman » Qui Ago 29, 2013 00:39

Para este caso( onde você sabe os pontos onde a parábola intersecta o eixo x) é interessante escrevê-la como

y(x) = a(x-r_1)(x-r_2)

onde aé um valor real e r_1 e r_2 são os valores de x para os quais y=0. Isto é, facilmente verifica-se que y(x=r_1) = y(x=r_2) = 0. Certo?

Para x=0 você tem y(x=0) = f, de modo que

y(x=0) = ar_1r_2 = f.

Como a distância entre os pontos A e B que são, respectivamente, na forma (x,y), (r_1,0) e (r_2,0) é L e ainda esses pontos são simétricos, isto é, r_1 = -r_2, então

r_2 - r_1 = L ==> r_2 = (L/2) e r_1 = -(L/2).

Assim, a equação anterior fica

ar_1r_2 = f ==> -a (L^2/4) = f ==> a = - (4f/L^2)

donde a função da parábola será

y(x) = - (4f/L^2)(x + (L/2)) (x-(L/2)) = - (4f/L^2)(x^2 - (L^2/4) ) = -f((4x^2/L^2)-1)

Agora, como x1, x2 e x3 estão igualmente espaçados então x1 = L/8, x2=L/4 e x3 = 3L/8. Logo:

y(x1) = -f((4x1^2/L^2) - 1) = -f((4L^2/8^2 L^2) - 1) = -f (1-16)/16 = f(15/16)
y(x2) = ...

Só repetir pra todos eles que você calcula todas as alturas. (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Calculo de viga com função.

Mensagempor karenblond » Qui Ago 29, 2013 23:56

Olha me perdoa eu não entendi nada vou te mostrar a resposta....
resp.png


Eu gostaria de saber como ele chegou no x1 passo a passo obrigada...
karenblond
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qua Mar 24, 2010 14:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calculo de viga com função.

Mensagempor Russman » Sex Ago 30, 2013 02:16

Sim, a resposta que você tem aí corresponde com a minha. Porém, ele parte de que a parábola pode ser escrita daquela forma resumida e já sái substituindo todos os valores. Eu não. Eu resolvi de acordo com a figura, para um caso geral. Veja que eu escrevi:

Russman escreveu:y(x1) = -f((4x1^2/L^2) - 1) = -f((4L^2/8^2 L^2) - 1) = -f (1-16)/16 = f(15/16)


No problema f=5. Assim, 5.15/16 = 75/16 como ele chega na sua solução.

Pena que o editor LaTex não está funcionando...se não você veria as fórmulas de forma mais clara.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Calculo de viga com função.

Mensagempor almeidaa_yago » Seg Set 26, 2016 02:28

Para este caso( onde você sabe os pontos onde a parábola intersecta o eixo x) é interessante escrevê-la como

y(x) = a(x-r_1)(x-r_2)

onde a é um valor real e r_1 e r_2 são os valores de x para os quais y=0. Isto é, facilmente verifica-se que y(x=r_1) = y(x=r_2) = 0. Certo?

Para x=0 você tem y(x=0) = f, de modo que

y(x=0) = ar_1r_2 = f.

Como a distância entre os pontos A e B que são, respectivamente, na forma (x,y), (r_1,0) e (r_2,0) é L e ainda esses pontos são simétricos, isto é,r_1 = -r_2, então

r_2 - r_1 = L ==> r_2 = (L/2) e r_1 = -(L/2).

Assim, a equação anterior fica

ar_1r_2 = f ==> -a (L^2/4) = f ==> a = - (4f/L^2)

donde a função da parábola será

y(x) = - (4f/L^2)(x + (L/2)) (x-(L/2)) = - (4f/L^2)(x^2 - (L^2/4) ) = -f((4x^2/L^2)-1)

Agora, como x1, x2 e x3 estão igualmente espaçados então x1 = L/8, x2=L/4 e x3 = 3L/8. Logo:

y(x1) = -f((4x1^2/L^2) - 1) = -f((4L^2/8^2 L^2) - 1) = -f (1-16)/16 = f(15/16)
y(x2) = ...
almeidaa_yago
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Set 26, 2016 02:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D