por bruno28 » Sáb Ago 24, 2013 17:01
01) Pegue um papel circular de 4 polegadas (10 cm) de raio como esquematizado abaixo na figura (a). Corte
um setor com um comprimento de arco x. Junte as duas extremidades da parte remanescente para
formar um cone com raio r e altura h, como está indicado na parte (b).
a)Explique por que o comprimento da circunferência da base do cone é 8? –x.
b) Expresse o raio r em função de x.
c) Expresse a altura h em função de x.
d) Expresse o volume V do cone em função de x.
02) Uma tenda em forma de uma pirâmide quadrada é construída a partir de um pedaço quadrado de lado
L de um certo material. A diagonal do quadrado de lado L é quatro vezes a diagonal do quadrado
menor (base da pirâmide) e a distância do centro da base da pirâmide até um dos seus lados, é x (figura
abaixo).
a)Expresse L em função de x.
b) Expresse a altura h da pirâmide em função x.
c) Encontre um modelo matemático para expressar o volume V da tenda como uma função de L. Qual o
domínio de V para valores de L?
d) Para caso em que L=5, determine qual o valor de x quando V=(4/3)x².
-
bruno28
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Ago 24, 2013 16:53
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por zer0 » Dom Ago 25, 2013 19:48
Up!
Até eu tentei fazer agora essa questão mas nem sei por onde começar...
Fiquei curioso agora de como resolver esse tipo de questão...
Alguém saberia resolver?
-
zer0
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Ago 25, 2013 19:45
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Funções] questões de funções
por Zandrojr » Qua Ago 31, 2011 11:39
- 0 Respostas
- 2915 Exibições
- Última mensagem por Zandrojr

Qua Ago 31, 2011 11:39
Funções
-
- Funções reais. como resolver estas funções...
por LEANDRO HENRIQUE » Ter Mar 04, 2014 18:43
- 0 Respostas
- 3199 Exibições
- Última mensagem por LEANDRO HENRIQUE

Ter Mar 04, 2014 18:43
Funções
-
- [Funções] Domínio e a imagem de funções
por concurseironf » Qui Ago 21, 2014 12:24
- 1 Respostas
- 3916 Exibições
- Última mensagem por Pessoa Estranha

Sex Ago 22, 2014 20:11
Funções
-
- questoes de esfera
por camilalindynha » Ter Dez 11, 2007 09:12
- 1 Respostas
- 11052 Exibições
- Última mensagem por admin

Ter Dez 11, 2007 12:26
Geometria Espacial
-
- Questões da UFRGS
por Neperiano » Qua Fev 11, 2009 18:32
- 3 Respostas
- 23880 Exibições
- Última mensagem por rcompany

Qui Fev 21, 2019 23:21
Desafios Enviados
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.