• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação de expressão.

Simplificação de expressão.

Mensagempor Sobreira » Qui Ago 22, 2013 01:53

Na seguinte expressão abaixo, eu tentei igualar a x para resolver mas não consigo passar de um determinado ponto.

\sqrt[]{9+4\sqrt[]{5}}

\sqrt[]{9+\sqrt[]{80}}

9+\sqrt[]{80}={x}^{2}

A partir daí como posso fazer para simplificar mais ??
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Simplificação de expressão.

Mensagempor Renato_RJ » Qui Ago 22, 2013 12:54

Bom dia !!

Note que você tem uma equação quadrática, veja:

9 + \sqrt{80} = x^2 \Rightarrow x^2 - 9 - 4\sqrt{5} = 0

Agora é achar as raízes dessa equação:

x = \pm \sqrt{9 + 4\sqrt{5}}

Abraços !!
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Simplificação de expressão.

Mensagempor Sobreira » Qui Ago 22, 2013 18:12

Pois bem. Realizando isto que você prôpos eu acabei por retornar à equação inicial.
Eu quero simplifica-lá além do passo que eu cheguei.
Pensei em elevar novamente ao quadrado, mas aí eu teria {x}^{4}.
Quero terminar através de simplificação, tratando a equação como uma irracional.
Não quero calcular o valor através de uma calculadora (convenhamos que não é das tarefas mais simples encontrar raízes não exatas, como por exemplo, primeiro a raiz de 5 depois a raiz do resultado disso vezes 4 +9 na mão.)
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}