• Anúncio Global
    Respostas
    Exibições
    Última mensagem

por favor me ajudem nesta questao de função

por favor me ajudem nesta questao de função

Mensagempor andressamartiins » Dom Ago 18, 2013 14:44

Uma produtora pretende lançar um filme em fita de vídeo e prevê uma venda de 20.000 cópias. O custo fixo de produção do filme foi R$ 150.000,00 e o custo por unidade foi de R$ 20,00 (fita virgem, processo de copiar e embalagem).
Qual o preço mínimo que deverá ser cobrado por fita, para não haver prejuízo?
como encontrar 25 reais no prejuízo
andressamartiins
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Ago 18, 2013 14:35
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: por favor me ajudem nesta questao de função

Mensagempor Pessoa Estranha » Dom Ago 18, 2013 18:58

andressamartiins escreveu:Uma produtora pretende lançar um filme em fita de vídeo e prevê uma venda de 20.000 cópias. O custo fixo de produção do filme foi R$ 150.000,00 e o custo por unidade foi de R$ 20,00 (fita virgem, processo de copiar e embalagem).
Qual o preço mínimo que deverá ser cobrado por fita, para não haver prejuízo?
como encontrar 25 reais no prejuízo


Os dados são: venda de 20.000 cópias, gasto de 150.000 reais com a produção do filme e gasto de 20 reais coma produção de cada fita.
Note que se a produtora pretende vender 20.000 cópias, então, com um gasto de 20 reais por cópia, vem que a produtora gastará 20 . 20000 = 400000 reais. Assim, temos que a produtora gastou R$400.000 + R$150.000 = R$550.000 ao total. Logo, temos que pensar quantos reais devem ser acrescidos nos R$20,00 gastos para produzir a fita na hora de vender, ou seja:

y = preço de venda da cópia = x + R$20,00
(x + 20).20000 = 550000 (para cobrir todos os gastos)

Então: x + 20 = 27,50
x = 7,50

Logo, para não haver prejuízo, cobrindo todos os gastos, cada cópia do filme deve ser vendida por R$ 27,50.

Se a produtora quisesse lucro, então poderia cobrar R$ 30,00 a cópia, pois:
30 . 20000 = 600000 > 550000
Lucro de R$50000.

Agora, para ter prejuízo de R$ 25,00:
x. 20000=550000-25=549975
x=R$27,49875
Teria que cobrar, por cópia, R$ 27,49875.
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D