• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda !!!! ja tentei de tudo

Ajuda !!!! ja tentei de tudo

Mensagempor GabriellCoelho » Dom Ago 18, 2013 02:15

Depois de tantas tentativas não sei mais por onde começar.

Sejam p(x)= 2x^2010 - 5x^2 - 13x+7 e q(x) = x^2 + x + 1. Tomando r(x) como sendo o resto na divisão de p(x) por q(x),o valor de r(2) sera
a)-8
b)-6
c)-4
d)-3
e)-2
GabriellCoelho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Ago 18, 2013 01:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda !!!! ja tentei de tudo

Mensagempor young_jedi » Seg Ago 19, 2013 19:41

fazendo a divisão

\frac{p(x)}{r(x)}=\frac{2.2^{2010}-5.2^2-13.2+7}{2^2+2+1}

\frac{2^{2011}-39}{7}

\frac{2^{2011}}{7}-\frac{39}{7}

veja que o termo que é exponencial de 2 nos podemos fazer o seguinte

\frac{2^3.2^{2008}}{7}-\frac{39}{7}

\frac{8.2^{2008}}{7}-\frac{39}{7}

\frac{(7+1).2^{2008}}{7}-\frac{39}{7}

\frac{7.2^{2008}+2^{2008}}{7}-\frac{39}{7}

2^{2008}+\frac{2^{2008}}{7}-\frac{39}{7}


repetindo o processo

2^{2008}+2^3.\frac{2^{2005}}{7}-\frac{39}{7}

2^{2008}+(7+1)\frac{2^{2005}}{7}-\frac{39}{7}

2^{2008}+2^{2005}+\frac{2^{2005}}{7}-\frac{39}{7}

veja que podemos repetir o processo varias vezes
o importante é que como agrupamos o 2 em grupos de três (2^3) então se dividirmos 2011 por 3 o resto dessa divisão sera o expoente da potencia 2 no resto da divisão por 7

o resto da divisão de 2011 por 3 é 1 portanto

2^{2008}+2^{2005}+2^{2002}\dots+\frac{2^1}{7}-\frac{39}{7}

2^{2008}+2^{2005}+2^{2002}\dots+\frac{2}{7}-5-\frac{4}{7}

2^{2008}+2^{2005}+2^{2002}\dots-5+\frac{2-4}{7}

2^{2008}+2^{2005}+2^{2002}\dots-5+\frac{-2}{7}

portanto o resto da divisão é -2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.