por thadeu » Qua Nov 18, 2009 13:47
Encontre o valor máximo e o valor mínimo que a função

pode assumir
-
thadeu
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Out 19, 2009 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Elcioschin » Qua Nov 18, 2009 17:50
f(x) = (senx)^6 + cos(x)^6
f '(x) = [6*(senx)^5]*cosx + [6*(cosx)^5]*(-senx)
f '(x) = 6*senx*cosx*[(senx)^4 - (cosx)^4]
f '(x) = 3*(2*senx*cosx)*[(sen²x + cos²x)*(sen²x - cos²x)] ----> sen²x + cos²x = 1
f '(x) = 3*sen(2x)*(sen²x - cos²x)
Os pontos de máximo e mínimo da função quando a derivada é nula. Temos portanto:
1) sen(2x) = 0 ----> 2x = 0º ---> x = 0º ----> f(0º) = 1 ----> Valor máximo da função.
2) sen²x - cos²x = 0 ----> sen²x = 1 - sen²x ----> 2*sen²x = 1 ---> sen²x = 1/2 ----> senx = V2/2 -----> x = 45º
f(45º) = (cos45º)^6 + (sen45º)^6 ----> f(45º) = (V2/2)^6 + (V2/2)^6 ----> f(45º) = 1/4 ---> Valor mínimo da função
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Maximo e Minimo]
por Scheu » Sex Mar 16, 2012 01:23
- 1 Respostas
- 2281 Exibições
- Última mensagem por MarceloFantini

Sex Mar 16, 2012 03:14
Cálculo: Limites, Derivadas e Integrais
-
- [Máximo & Minimo]
por allakyhero » Sáb Jun 30, 2012 12:41
- 6 Respostas
- 4588 Exibições
- Última mensagem por allakyhero

Dom Jul 01, 2012 11:06
Cálculo: Limites, Derivadas e Integrais
-
- máximo e minimo
por brunoguim05 » Qua Mai 28, 2014 15:26
- 0 Respostas
- 1472 Exibições
- Última mensagem por brunoguim05

Qua Mai 28, 2014 15:26
Geometria Analítica
-
- Otimização - Máximo e Mínimo
por elbert005 » Dom Jun 05, 2011 20:32
- 0 Respostas
- 4624 Exibições
- Última mensagem por elbert005

Dom Jun 05, 2011 20:32
Cálculo: Limites, Derivadas e Integrais
-
- [Máximo e Mínimo] - Teoria?
por allakyhero » Dom Jul 01, 2012 13:38
- 3 Respostas
- 2244 Exibições
- Última mensagem por e8group

Dom Jul 01, 2012 16:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.