• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra

Álgebra

Mensagempor marinalcd » Ter Ago 13, 2013 21:14

Estou começando a estudar esse assunto e estou com dificuldade para resolver esta questão. Alguém pode me ajudar?

Seja os subconjuntos:

A_{0}\,=\,\{\,4k\,|\,k\,\in\,\mathbb{Z}\,\} , A_{1}\,=\,\{\,4k\,+\,1\,|\,k\,\in\, \mathbb{Z}\,\}, A_{2}\,=\,\{\,4k\,+\,2\,|\,k\,\in\, \mathbb{Z}\,\}, A_{3}\,=\,\{\,4k\,+\,3\,|\,k\,\in\, \mathbb{Z}\,\}.

Mostre que os conjuntos A_{0}\,,\, A_{1}\,,\, A_{2}\,,\, A_{3} formam uma partição de\mathbb{Z}.

Obrigada!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Álgebra

Mensagempor amandasousa_m » Qui Ago 15, 2013 08:47

Números inteiros formam o conjunto de números positivos ou negativos não decimais, certo?

Portanto, se k é um número inteiro, ele satisfaz esta condição. Se você multiplica ou soma qualquer número natural a um inteiro, o produto ou a soma tem de estar dentro do conjunto dos inteiros.

É nesse sentido.
amandasousa_m
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sex Jul 19, 2013 09:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Álgebra

Mensagempor marinalcd » Qui Ago 15, 2013 12:55

Oi!
Olha só, o seu raciocínio está certo, eu também pensei assim, o problema é que eu tenho que mostrar isso, desenvolver. A dificuldade está em estabelecer uma prova para este conceito. Mas mesmo assim, obrigada pela ajuda!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Álgebra

Mensagempor amandasousa_m » Qui Ago 15, 2013 20:17

Pensei nisso logo que respondi haha

Para que todos esses conjuntos sejam partições eles devem ser disjuntos (a interseção entre eles tem que ser igual a zero), a união entre os quatro conjuntos tem que ser igual a zero e nenhum deles devem ser vazios.

Acho que atruibuindo valores aleatórios ou mesmo um embasamento genérico pode demonstrar que os subconjuntos satisfazem as condições.
amandasousa_m
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sex Jul 19, 2013 09:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Álgebra

Mensagempor MateusL » Sex Ago 16, 2013 12:56

Se A_0,\ A_1,\ A_2,\ A_3 são uma partição de \mathbb{Z}, então todos esses conjuntos são dois a dois disjuntos, a união de todos eles é igual a \mathbb{Z} e nenhum desses conjuntos é vazio.

Então tens que provar que todo número inteiro pertencerá a um e somente um desses quatro conjuntos e que nenhum desses conjuntos é vazio.
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Álgebra

Mensagempor marinalcd » Sex Ago 23, 2013 14:59

O que seria o conjunto quociente Z/R? Tentei montar um conjunto, mas não estou entendendo..
Alguém pode me ajudar?
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Álgebra

Mensagempor MateusL » Sex Ago 23, 2013 16:01

Na verdade, acho que a Amanda se confundiu na explicação.

Esses quatro conjuntos particionam o conjunto dos inteiros da seguinte maneira:

A_0: contém todos os múltiplos de 4, ou seja, números que deixam resto zero na divisão por 4.
A_1: contém todos os números que deixam resto 1 quando divididos por 4.
A_2: contém todos os números que deixam resto 2 quando divididos por 4.
A_3: contém todos os números que deixam resto 3 quando divididos por 4.
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?